KDD2018

FASTEN: Fast Sylvester Equation Solver for Graph Mining

Presenter: Boxin Du
Joint work by:

Boxin Du

Why Sylvester Equation?

- Link users from different social networks [Zhang et al' 16]

Network alignment
 [Du et al' 17]

Subgraph matching

Query pattern

Node similarity

Chemical compound network

What is Sylvester Equation: an example on plain graph

| | 1^{\prime} | 2^{\prime} | 3 | 3^{\prime} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0.040 | 0.047 | 0.048 | 0.048 |
| 2 | 0.027 | 0.138 | 0.047 | 0.047 |
| 3 | 0.040 | 0.047 | 0.048 | 0.048 |
| 4 | 0.261 | 0.027 | 0.040 | 0.040 |

Solution matrix \mathbf{X} of the Sylvester equation:

$$
\mathrm{X}=\mathrm{A}_{\mathbf{2}} \mathbf{X} \mathbf{A}_{\mathbf{1}}+\mathbf{B}
$$

($\mathbf{A}_{\mathbf{1}}$ and $\mathbf{A}_{\mathbf{2}}$ are normalized)

- Sylvester equation $X=\mathbf{A}_{\mathbf{2}} \mathbf{X} \mathbf{A}_{\mathbf{1}}+B$ gives the cross-network node similarity matrix \mathbf{X};

What is Sylvester Equation: an example on attributed graph

Input graphs with node attributes (colors and shapes)
A_{1} :

B:

$\mathbf{A}_{\mathbf{2}}$:

Solution X of $\mathrm{X}-\sum_{i, j=1}^{2} \mathbf{A}_{2}^{(i j)} \mathrm{X}\left(\mathbf{A}_{1}^{(i j)}\right)^{\mathrm{T}}=\mathrm{B}$ (\mathbf{A}_{1} and \mathbf{A}_{2} are normalized)

$$
\text { e.g. } \mathbf{A}_{\mathbf{1}}^{\mathbf{1 1}:} \quad \mathbf{A}_{\mathbf{1}}^{12} \text { : }
$$

0	0	0	0
0	0		
0	0	0	0
0	0	0	0

- Sylvester equation $\mathbf{X}-\sum_{i, j=1}^{2} \mathbf{A}_{2}^{(i j)} \mathbf{X}\left(\mathbf{A}_{1}^{(i j)}\right)^{\mathbf{T}}=\mathrm{B}$ gives the cross-network node similarity matrix \mathbf{X};
[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016.

Formal Definition of Sylvester Equation (Plain Graph)

- Given:

- Two graphs G_{1} and G_{2} (the adjacency matrices are $\mathbf{A}_{\mathbf{1}}$ and \mathbf{A}_{2});
- The preference matrix B.
- Find: the solution \mathbf{X} of Sylvester equation: $\mathbf{X}-\mathbf{A}_{\mathbf{2}} \mathbf{X} \mathbf{A}_{\mathbf{1}}{ }^{T}=\mathbf{B}$
or \mathbf{x} of its equivalent linear system: $(\mathbf{I}-\mathbf{W}) \mathbf{x}=\mathrm{b}$
- Mathematical details:
- $\mathbf{A}_{1} \leftarrow \alpha^{1 / 2} D_{1}^{-1 / 2} A_{1} D_{1}^{-1 / 2}, A_{2} \leftarrow \alpha^{1 / 2} D_{2}^{-1 / 2} A_{2} D_{2}^{-1 / 2} ;$

Solution matrix \mathbf{X}

- $\mathbf{D}_{\mathbf{1}}$ and \mathbf{D}_{2} are the diagonal degree matrices of $\mathbf{A}_{\mathbf{1}}$ and $\mathbf{A}_{\mathbf{2}}, 0<\alpha<1$;
- $\mathbf{W}=\mathbf{A}_{\mathbf{1}} \otimes \mathbf{A}_{\mathbf{2}}$ (both are normalized), $\mathbf{x}=\operatorname{vec}(\mathbf{X}), \mathrm{b}=\operatorname{vec}(\mathrm{B})$.

Formal Definition of Sylvester Equation (Attributed Graph)

- Given:

- Two graphs $G_{1}=\left\{A_{1}, N_{1}\right\}, G_{2}=\left\{A_{2}, N_{2}\right\} ;$

G1
a has node attribute j, o w it is zero.

- The preference matrix \mathbf{B}.
- Find: the solution \mathbf{X} of Sylvester equation: $\mathbf{X}-\sum_{i, j=1}^{l} \mathbf{A}_{2}^{(i j)} \mathbf{X}\left(\mathbf{A}_{1}^{(i j)}\right)^{\mathbf{T}}=\mathrm{B}$
or x of its equivalent linear system:
- Mathematical details:

$$
\left[\mathrm{I}-\sum_{i, j=1}^{l}\left(\mathrm{~A}_{1}^{(i j)} \otimes \mathrm{A}_{2}^{(i j)}\right)\right] \mathrm{x}=\mathrm{b}
$$

- $\mathbf{A}_{1}^{(i j)} \leftarrow \alpha^{1 / 2} \mathbf{D}_{1}^{-1 / 2} \mathbf{N}_{1}^{i} \mathbf{A}_{1} \mathbf{N}_{1}^{j} \mathbf{D}_{1}^{-1 / 2}, \mathbf{A}_{2}^{(i j)} \leftarrow \alpha^{1 / 2} \mathbf{D}_{2}^{-1 / 2} \mathbf{N}_{2}^{i} \mathbf{A}_{2} \mathbf{N}_{2}^{j} \mathbf{D}_{2}^{-1 / 2} ;$

- $\mathbf{A}_{\mathbf{1}}^{(i j)}$ is the adjacency matrix 'filtered' by attribute i and j.
$\cdot l:$ the number of node attributes, $x=\operatorname{vec}(\mathbf{X}), b=\operatorname{vec}(\mathbb{B})$.

Challenges of Solving the Sylvester Equation

- Size of $\mathbf{A}_{1} \otimes \mathrm{~A}_{\mathbf{2}}$:
$-n^{2} \times n^{2}$ (for plain graphs with n nodes and m edges);
- Straightforward solver costs $\mathrm{O}\left(\mathrm{n}^{6}\right)$ (time) and $\mathrm{O}\left(\mathrm{m}^{2}\right)$ (space);

The $\Omega\left(n^{2}\right)$ bottleneck
-State-of-the-art methods: time complexity at least $0\left(m n+n^{2}\right)$;

- With node attributes:
- Add additional $\mathrm{O}(l)$ complexity (for l discrete node attributes);
- Size of solution matrix \mathbf{X} :
$-n \times n ;$
- Usually not sparse;
- Limit the time/space complexity of the equation solver.

Comparison of Methods for the Sylvester Equation

Roadmap

- Motivations
- Background
- Proposed Algorithms for plain graphs
- Proposed Algorithms for attributed graphs
- Experimental Results
- Conclusions

Krylov Subspace Method (KSM) for Linear System

- Minimal residual method for linear system $\mathbf{A x}=\mathbf{b}\left(\mathbf{x} \in \mathrm{R}^{\mathrm{n}}\right)$:
- Extract \mathbf{x} from k-dimensional subspace of $\mathrm{R}^{\mathrm{n}} \longrightarrow \mathbf{x} \in \mathbf{x}_{\mathbf{0}}+K_{k}$
- Minimize residual $\mathbf{r}=\mathbf{b}-\mathbf{A x} \perp L_{k}$ \qquad small scaled system
- Iteratively update \mathbf{x} and \mathbf{r} until $|\mathbf{r}|_{2}$ is small enough
- Example:

- Let $\mathbf{x}_{\mathbf{0}}=[\mathbf{0}, \mathbf{0}, \mathbf{0}]^{T}$ (i.e. $\left.\mathbf{r}_{\mathbf{0}}=\mathbf{b}\right)$, extract $\mathbf{x}_{\mathbf{1}} \in K_{k}$.
- Let $\mathbf{x}_{\mathbf{1}}=\mathbf{x}_{\mathbf{0}}+\mathbf{z}_{\mathbf{0}}$, minimize $\mathbf{r}=\mathbf{r}_{\mathbf{0}}-\mathbf{A} \mathbf{z}_{\mathbf{0}}\left(\mathbf{r} \perp L_{k}\right)$.
- Update \mathbf{x} in 3-d space.

$$
\begin{aligned}
& \mathbf{r}_{\mathbf{0}}-\mathbf{A z}_{\mathbf{0}}: \text { new residual } \\
& L_{k}: \text { Subspace of constraints }
\end{aligned}
$$

KSM for Linear System (cont'd)

- Krylov subspace:
$-K_{k}\left(\mathbf{A}, \mathbf{r}_{\mathbf{0}}\right)=\operatorname{span}\left\{\mathbf{r}_{\mathbf{0}}, \mathbf{A r}_{\mathbf{0}}, \mathbf{A}^{2} \mathbf{r}_{\mathbf{0}}, \ldots, \mathbf{A}^{k-1} \mathbf{r}_{\mathbf{0}}\right\} ;$

-Arnoldi process outputs i orthonormal basis: $\mathbf{V}_{i}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{i}\right], i \in\{k, k+1\}$
$-\mathbf{A V}_{k}=\mathbf{V}_{k+1} \widetilde{\mathbf{H}}_{k}$

- Krylov subspace-based Minimal Residual method:
-Extract solution from k-dimensional Krylov subspace (let $K_{k}=K_{k}\left(\mathbf{A}, \mathbf{r}_{0}\right)$);
-Minimize the residual \mathbf{r} and update solution at every iteration.
[1] Saad, Yousef. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.

Advantages of KSM with Minimal Residual

- Arnoldi: $O(m)$ for sparse system;
- Solve small scaled system every iteration;
- Exact solution, no approximation needed;
- Upper-Hessenberg makes solving system faster. \square

High dimensional system
Update solution in original dimension

- Details:

Minimize residual
$J(\mathbf{y})=||\mathbf{b}-\mathbf{A x}||_{2}$

= ...
$=\left\|\beta \mathbf{e}_{1}-\widetilde{\mathbf{H}}_{k} \mathbf{y}\right\|_{2}$
equivalent to solve:

$$
\widetilde{\mathbf{H}}_{k} \mathbf{y}=\beta \mathbf{e}_{1}
$$

Challenges of Applying KSM on Sylvester Equation

- Size of $(\mathbf{I}-\mathbf{W}) \mathrm{x}=\mathrm{b}$:
$n^{2} \times n^{2} * \square$ -Generate $K_{k^{2}}\left(\mathbf{I}-\mathbf{A}_{\mathbf{1}} \otimes \mathbf{A}_{\mathbf{2}}, \mathbf{r}_{\mathbf{0}}\right) \Longrightarrow O\left(n^{4}\right)$ or $O\left(m^{2}\right)$ in time $/$ space cost;
- Size of $\left[\mathrm{I}-\sum_{i, j=1}^{l}\left(\mathrm{~A}_{1}^{(i j)} \otimes \mathrm{A}_{2}^{(i j)}\right)\right] \mathrm{x}=\mathrm{b}$:
 - Generate $K_{k^{2}}\left(\mathbf{I}-\sum_{i, j=\mathbf{1}}^{l}\left(\mathbf{A}_{\mathbf{1}}^{(i j)} \otimes \mathbf{A}_{\mathbf{2}}^{(i j)}\right), \mathbf{r}_{\mathbf{0}}\right) \Longrightarrow O\left(\ln ^{4}\right)$ or $O\left(\mathrm{~lm}^{2}\right)$ cost.

- Example:

Krylov subspace of $K_{k^{2}}\left(\mathbf{I}-\mathbf{A}_{\mathbf{1}} \otimes \mathbf{A}_{\mathbf{2}}, \mathbf{r}_{\mathbf{0}}\right)$: 16 dimension

Roadmap

- Motivations
- Background
- Proposed Algorithms for plain graphs
- Proposed Algorithms for attributed graphs
- Experimental Results
- Conclusions

Key Ideas

-\#1: Kronecker Krylov Subspace (KKS)
-Implicit construction of the original large Krylov subspace
-Largely reduce the time/space complexity $O\left(n^{4}\right) \Longrightarrow O\left(n^{2}\right)$

- \#2: MRES* on KKS with Implicit Solution Representation
-Solve small scaled system and update solution till converge
-Further reduce the time/space complexity $O\left(k n^{2}\right) \Longrightarrow O\left(k^{2} n+k m\right)$
*: MRES: Minimal Residual method

Kronecker Krylov Subspace (Details)

- Step 1: Choose Arnoldi vectors g, f; $O\left(n^{2}\right)$
- Step 2: Generate $K_{k}\left(\mathbf{A}_{1}, \mathbf{g}\right) ; O(\mathrm{~km})$
- Step 3: Generate $K_{k}\left(\mathbf{A}_{\mathbf{2}}, \mathbf{f}\right) ; O(\mathrm{~km})$
- Details:

$$
\begin{gathered}
\mathbf{A}_{\mathbf{1}} \mathbf{V}_{k}=\mathbf{V}_{k+1} \widetilde{\mathbf{H}}_{1} \\
\mathbf{V}_{k}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]
\end{gathered}
$$

- Choosing g, f s.t. $\mathbf{r}_{\mathbf{0}} \in K_{k}\left(\mathbf{A}_{\mathbf{1}}, \mathbf{g}\right) \otimes K_{k}\left(\mathbf{A}_{\mathbf{2}}, \mathbf{f}\right)$:
- If $\left|\left|\mathbf{R}_{\mathbf{0}}\left\|_{1} \leq| | \mathbf{R}_{\mathbf{0}}\right\|_{\infty}\right.\right.$,
$\mathbf{f}: \mathbf{R}_{\mathbf{0}}$'s column of largest norm, $\mathbf{g}=\mathbf{R}_{0}^{\mathbf{T}} \mathbf{f} /|\mathbf{f}|_{2}^{2}$
- If $\left|\left|\mathbf{R}_{\mathbf{0}}\left\|_{1}>| | \mathbf{R}_{0}\right\|_{\infty}\right.\right.$,
$\mathbf{g}: \mathbf{R}_{\mathbf{0}}$'s row of largest norm, $\mathbf{f}=\mathbf{R}_{\mathbf{0}}^{\mathbf{T}} \mathbf{g} /\left.\mathbf{g}\right|_{2} ^{2}$

Theorem: $\mathbf{V}_{k} \otimes \mathbf{W}_{\mathrm{k}}$ forms the orthonormal basis of the Kronecker Krylov subspace; don't need to be computed directly

Example $\quad(\mathrm{I}-\mathrm{W}) \mathrm{x}=\mathrm{b}$

- Step 1: $\mathbf{R}_{\mathbf{0}}=B\left(\mathbf{x}_{\mathbf{0}}=\mathbf{0}\right), \mathbf{f}=[0,0,0,1]^{T}, \mathbf{g}=[1,0,0,0]^{T}$;
- Step 2: $K_{k}\left(\mathbf{A}_{1}, \mathbf{g}\right)=\operatorname{span}\left\{[0,0.7071,0.7071,0],^{T}[1,0,0,0]^{T}\right\}$;
$\mathbf{v}_{\mathbf{1}} \quad \mathbf{v}_{\mathbf{2}}$
- Step 3: $K_{k}\left(\mathbf{A}_{2}, \mathbf{f}\right)=\operatorname{span}\left\{[0,0.7071,0.7071,0]^{T},[0,0,0,1]^{T}\right\}$;

- $K_{k}\left(\mathbf{A}_{\mathbf{1}}, \mathbf{g}\right) \otimes K_{k}\left(\mathbf{A}_{\mathbf{2}}, \mathbf{f}\right)=\operatorname{span}\left\{\mathbf{v}_{\mathbf{1}} \otimes \mathbf{w}_{\mathbf{1}}, \mathbf{v}_{\mathbf{1}} \otimes \mathbf{w}_{\mathbf{2}}, \mathbf{v}_{\mathbf{2}} \otimes \mathbf{w}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}} \otimes \mathbf{w}_{\mathbf{2}}\right\}$.

Minimal Residual (Details): $\quad(\mathrm{I}-\mathrm{W})_{\mathrm{x}}=\mathrm{b}$

- Step 1: Initial residual: $\mathbf{r}_{\mathbf{0}}=\mathbf{b}-(\mathbf{I}-\alpha \mathbf{W}) \mathbf{x}_{\mathbf{0}}$
- Step 2: Let new solution:
$\mathbf{x}=\mathbf{x}_{\mathbf{0}}+\mathbf{z}_{0}, \mathbf{z}_{\mathbf{0}} \in K_{k}\left(\mathbf{A}_{\mathbf{1}}, \mathbf{g}\right) \otimes K_{k}\left(\mathbf{A}_{\mathbf{2}}, \mathbf{f}\right)$
- Step 3: Minimize new residual:

$$
\left|\mid \mathbf{R}\left\|_{2}=\right\|{\widetilde{\mathbf{W}_{k+1}^{\mathrm{T}} \mathbf{R}_{0} \mathbf{V}_{k+1}}-\widetilde{\mathbf{H}}_{2} \mathbf{Y} \widetilde{\mathbf{H}}_{1}^{\mathrm{T}}+\mathbf{I}_{k+1, k} \mathbf{Y} \mathbf{I}_{k+1, k}^{T}}^{\left.\right|_{\mathbf{F}}}\right.
$$

Effectiveness: this method gives the exact solution of the Sylvester equation on plain graphs w.r.t. a tolerance ϵ.

Complexity: Time: $O\left(k n^{2}\right)$, Space: $O\left(n^{2}\right)$

- Both Y and C are k by k : small scaled system.
- Step 4: Update solution \mathbf{X} and residual \mathbf{R}.

Easy to solve!, $k \ll n$
$\mathbf{X} \leftarrow \mathbf{X}+\mathbf{V}_{\mathbf{k}} \mathbf{Y} \mathbf{W}_{\mathbf{k}}^{\mathrm{T}}, \mathbf{R} \leftarrow \mathbf{R}-\mathbf{V}_{\mathbf{k}+1} \widetilde{\mathbf{H}}_{1} Y \widetilde{\mathbf{H}}_{2}^{\mathrm{T}} \mathbf{W}_{\mathbf{k}+1}^{\mathrm{T}}+\mathbf{V}_{\mathbf{k}} \mathrm{Y} \mathbf{W}_{\mathbf{k}}^{\mathrm{T}}$

FASTEN-P

- Major steps:

- Details:
$-\mathbf{X}$ is often initialized as $\mathbf{0}$, and $\mathbf{R}=\mathrm{B}$;
- Overall Complexity: time: $\boldsymbol{O}\left(\mathrm{kn}^{2}\right)$; space: $\boldsymbol{O}\left(\mathrm{n}^{2}\right)$;

Can we further scale up? $\mathrm{X}-\mathrm{A}_{2} \mathrm{XA}_{1}{ }^{T}=\mathrm{B}$

- Goal: complexity: from $O\left(n^{2}\right)$ to linear
- Difficulties:
$-\mathbf{X}: n \times n, O\left(n^{2}\right)$ seems to be the lower bound;

$-\mathbf{X}$: in general not sparse.
- Observation:
- B is often sparse and low-rank (sparse anchor links across network);
- If prior anchor links are unknown: B is uniform (rank 1);
-B is low-rank $\longrightarrow \mathrm{X}$ must have low-rank property (see proof in paper).
- Solution:
- Implicit representation of residual \mathbf{R}, intermediate solution \mathbf{X}.

Kronecker Krylov Subspace with Low-rank Residual

- Step 1: Represent \mathbf{R}_{0} by low-rank matrices $\mathbf{U}_{1}, \mathbf{U}_{\mathbf{2}}: O(n)$.
- Step 2: Choose Arnoldi vectors $\mathbf{g}, \mathbf{f}:(r n)\left(r\right.$: rank of $\left.\mathbf{U}_{\mathbf{1}}, \mathbf{U}_{\mathbf{2}}\right)$
- Step 3: Generate $K_{k}\left(\mathbf{A}_{1}, \mathbf{g}\right), K_{k}\left(\mathbf{A}_{\mathbf{2}}, \mathbf{f}\right): O(\mathrm{~km})$, and obtain
- Details:
- Choosing g, f(let $\mathbf{r}_{1}=\mathbf{e}^{\mathrm{T}} \mathbf{U}_{1} \mathbf{U}_{2}, \mathbf{r}_{\mathbf{2}}=\mathbf{U}_{1} \mathbf{U}_{2} \mathbf{e}$):
$\mathbf{A}_{\mathbf{1}} \mathbf{V}_{k}=\mathbf{V}_{k+1} \widetilde{\mathbf{H}}_{1}$
$\mathbf{V}_{k}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right]$
- If $\max \left(\mathbf{r}_{1}\right) \geq \max \left(\mathbf{r}_{2}\right)$,
$\mathbf{f}=\mathbf{U}_{1} \mathbf{U}_{2}\left(:, i_{1}\right), \mathbf{g}=\mathbf{U}_{2}^{\mathrm{T}} \mathbf{U}_{1}^{\mathrm{T}} \mathbf{f} /\left.\mathbf{f}\right|_{2} ^{2}\left(i_{1}\right.$ is the index of \mathbf{r}_{1} 's largest entry)

$$
\begin{aligned}
& \mathbf{A}_{\mathbf{2}} \mathbf{W}_{k}=\mathbf{W}_{k+1} \widetilde{\mathbf{H}}_{2} \\
& \mathbf{W}_{\mathrm{k}}=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}\right]
\end{aligned}
$$

- If $\max \left(\mathbf{r}_{1}\right)<\max \left(\mathbf{r}_{2}\right)$,
$\mathbf{g}=\mathbf{U}_{2}^{T} \mathbf{U}_{\mathbf{1}}\left(i_{2},:\right), \mathbf{f}=\mathbf{U}_{\mathbf{1}} \mathbf{U}_{\mathbf{2}} \mathbf{g} /|\mathbf{g}|_{2}^{2}\left(i_{2}\right.$ is the index of $\mathbf{r}_{\mathbf{2}}$'s largest entry $)$

Example

- Step 1:

- B: Assume each node in G1 has at most one 1-to-1 anchor link to G2.
- $\mathbf{R}_{\mathbf{0}}=\mathrm{B}=[0,0,0,1]^{\mathbf{T}} *[1,0,0,0]=\mathbf{U}_{\mathbf{1}} \mathbf{U}_{2} ; O(n)$.
- Step 2: Choose Arnoldi vectors, $\mathbf{f}=[0,0,0,1]^{T}, \mathbf{g}=[1,0,0,0]^{T} ; O(\mathrm{rn})$
- Step 3:

$$
\begin{aligned}
& \bullet K_{k}\left(\mathbf{A}_{1}, \mathbf{g}\right)=\operatorname{span}\left\{[0,0.7071,0.7071,0],^{T}[1,0,0,0]^{T}\right\} ; O(\mathrm{~km}) \\
& \bullet K_{k}\left(\mathbf{A}_{2}, \mathbf{f}\right)=\operatorname{span}\left\{[0,0.7071,0.7071,0]^{T},[0,0,0,1]^{T}\right\} ; O(\mathrm{~km})
\end{aligned}
$$

A2

Minimal Residual Method with Low-rank Representation

- Step 1: Obtain and solve small scaled system $\mathcal{L}(\mathbf{Y})=\mathrm{C}$.
- Step 2: Implicit solution representation $\mathbf{P}=\left[\mathbf{P}, \mathbf{V}_{\mathbf{k}} \mathrm{Y}\right], \mathbf{Q}=\left[\mathbf{Q}, \mathbf{W}_{\mathbf{k}}^{\mathbf{T}}\right]$;
(Original updating: $\mathbf{X} \leftarrow \mathbf{X}+\mathbf{V}_{\mathbf{k}} \mathbf{Y} \mathbf{W}_{\mathbf{k}}^{\mathbf{T}}$)
Low-rank property: If B is
 rank r, the rank of \mathbf{X} is upper-bounded by iter $* r$ (iter: the iteration number)
- Step 3: Let $\boldsymbol{L}_{\mathbf{2}}=\boldsymbol{V}_{\boldsymbol{k}+\mathbf{1}} \widetilde{\mathbf{H}}_{1} \mathrm{Y} \widetilde{\mathbf{H}}_{2}^{T}, \mathrm{P}_{\mathbf{2}}=\mathbf{W}_{\mathbf{k}+\mathbf{1}}^{\mathrm{T}}, \mathbf{L}_{\mathbf{3}}=\mathbf{V}_{\mathbf{k}} \mathbf{Y}, \mathrm{P}_{\mathbf{3}}=\mathbf{W}_{\mathbf{k}}^{\mathbf{T}}$

Construct new residual $\mathbf{U}_{1}=\left[\mathbf{U}_{1}, \mathbf{L}_{2}, \mathbf{L}_{3}\right], \mathbf{U}_{2}=\left[\mathbf{U}_{2}^{\mathrm{T}}, \mathbf{P}_{2}^{\mathrm{T}}, \mathbf{P}_{3}^{\mathrm{T}}\right]^{\mathbf{T}}$
(Original updating: $\mathbf{R} \leftarrow \mathbf{R}-\mathbf{V}_{\mathbf{k}+\mathbf{1}} \widetilde{\mathbf{H}}_{\mathbf{1}} \mathbf{Y} \widetilde{\mathbf{H}}_{\mathbf{2}}^{\mathrm{T}} \mathbf{W}_{\mathbf{k}+\mathbf{1}}^{\mathbf{T}}+\mathbf{V}_{\mathbf{k}} \mathbf{Y} \mathbf{W}_{\mathbf{k}}^{\mathbf{T}}$)

R

Complexity: Time: $O(k(k+2) n)$, Space: $O(m+k n)$

FASTEN-P+

- Major steps:

- Details:
- 4. : $|\mathbf{R}| \|_{F}$ can be computed as $\operatorname{trace}\left(\mathbf{U}_{2}^{\mathrm{T}}\left(\mathbf{U}_{\mathbf{1}}^{\mathrm{T}} \mathbf{U}_{1}\right) \mathbf{U}_{2}\right)$;
- Overall Complexity: time: $\boldsymbol{O}\left(k m+k^{2} n\right)$; space: $\boldsymbol{O}(m+k n)$;

Roadmap

- Motivations
- Background
- Proposed Algorithms for plain graphs
- Proposed Algorithms for attributed graphs
- Experimental Results
- Conclusions

Key Ideas

- \#1: Decomposition of Sylvester equation
-Decompose the equation to a inter-correlated Sylvester equation set
-Each decomposed equation is small-scaled \& fast to solve
- \#2: Apply FASTEN-P(+) on decomposed equation
-Apply Block Coordinate Descent (BCD) on the whole equation set
-Efficiently solve every single equation by FASTEN-P(+)

Decomposition of Sylvester Equation

- Observation:
- The equation can be decomposed to:

$$
\mathbf{X}-\sum_{i, j=1}^{l} \mathbf{A}_{2}^{(i j)} \mathbf{X}\left(\mathbf{A}_{1}^{(i j)}\right)^{\mathbf{T}}=\mathrm{B}
$$

- The solution matrix \mathbf{X} has block-diagonal structure

1	0.022	0	0	0
2	0	0.083	0	0
3	0	0	0.022	0.022
4	0	0	0.222	0.022

Solution matrix \mathbf{X}

$$
\left\{\begin{array}{l}
\mathbf{X}^{i i}-\sum_{\mathbf{q}=1}^{\mathbf{1}} \mathbf{A}_{\mathbf{2}}^{i q} \mathbf{X}^{q q}\left(\mathbf{A}_{\mathbf{1}}^{i q}\right)^{\mathbf{T}}=\mathbf{B}^{i i} \\
\mathbf{X}^{i j}=\mathbf{B}^{i j} \quad(1 \leq i, j \leq l, i \neq j)
\end{array}\right.
$$

$-\mathbf{A}_{1}^{i q}$ is a block of \mathbf{A}_{1} of rows from attribute i to columns of attribute q.

- Off-diagonal block: need not to be solved
- Diagonal block: apply Block Coordinate Descent (BCD)

Apply FASTEN-P(+) on Decomposed Equation

- Observation:

$$
\mathbf{X}^{i i}-\sum_{\mathbf{q}=\mathbf{1}}^{\mathbf{1}} \mathbf{A}_{\mathbf{2}}^{i q} \mathbf{X}^{q q}\left(\mathbf{A}_{\mathbf{1}}^{i q}\right)^{\mathbf{T}}=\mathrm{B}^{i i}
$$

Diagonal block variables

- When applying BCD: solve a non-attributed Sylvester equation each time
- e.g.: when solving X^{11}, the equation becomes:

$$
\mathbf{X}^{11}-\mathbf{A}_{2}^{11} \mathbf{X}^{11}\left(\mathbf{A}_{1}^{11}\right)^{T}=\mathbf{B}^{11}+\sum_{q \neq 1}^{l} \mathbf{A}_{2}^{1 q} \mathbf{X}^{q q}\left(\mathbf{A}_{1}^{1 q}\right)^{T}=\widetilde{\mathbf{B}^{11}}
$$

- Apply FASTEN-P(+) to solve the above equation.

Example

- In this example, the attributed Sylvester equation is decomposed to:

$\mathrm{X}-\sum_{i, j=1}^{2} \mathbf{A}_{2}^{(i j)} \mathbf{X}\left(\mathbf{A}_{1}^{(i j)}\right)^{\mathbf{T}}=\mathrm{B}$
$\mathbf{X}^{11}-\left[\mathbf{A}_{2}^{11} \mathbf{X}^{11}\left(\mathbf{A}_{1}^{11}\right)^{T}+\mathbf{A}_{2}^{12} \mathbf{X}^{22}\left(\mathbf{A}_{1}^{12}\right)^{T}\right]=\mathbf{B}^{11}$
$\mathbf{X}^{22}-\left[\mathbf{A}_{2}^{21} \mathbf{X}^{11}\left(\mathbf{A}_{1}^{21}\right)^{T}+\mathbf{A}_{2}^{22} \mathbf{X}^{22}\left(\mathbf{A}_{1}^{22}\right)^{T}\right]=\mathbf{B}^{22}$
$X^{12}=B^{12}$
$X^{21}=B^{21}$
Diagonal

FASTEN-N

- Major steps:

$$
\mathbf{X}-\sum_{i, j=1}^{l} \mathbf{A}_{2}^{(i j)} \mathbf{X}\left(\mathbf{A}_{1}^{(i j)}\right)^{\mathrm{T}}=\mathrm{B}
$$

Initialize
each
diagonal $\mathbf{X}^{i i}$
and the
residual \mathbf{R}
$\Rightarrow\left(\begin{array}{c}2 \boldsymbol{O}(\boldsymbol{m}) \\ \text { Construct } \\ \text { block } \\ \text { matrices } \mathbf{A}_{1}^{i j} \\ \mathbf{A}_{2}^{i j}, \mathbf{B}^{i j} \text { by } \\ \mathbf{N}_{\mathbf{1}}, \mathbf{N}_{\mathbf{2}}\end{array}\right)$
> 3) $\boldsymbol{O}(\mathbf{m n} / l)$ Iterate l times to solve l block variables by BCD \& FASTEN-P
4) $O\left(k n^{2} / l\right)$ Update X and \mathbf{R}; check stopping condition

Till converge $\left(||\mathbf{R}||_{F}<\epsilon\right)$

- Details:
- 2 : $\mathbf{N}_{\mathbf{1}}, \mathbf{N}_{\mathbf{2}}$ are the node attribute matrices of $\mathbf{A}_{\mathbf{1}}$ and $\mathbf{A}_{\mathbf{2}}$.
- Overall Complexity: time: $\boldsymbol{O}\left(m n / l+k n^{2} / l\right)$; space: $\boldsymbol{O}\left(m / l+n^{2}\right)$;

From FASTEN-N to FASTEN-N+
 $$
\mathbf{X}-\sum_{i, j=1}^{l} \mathbf{A}_{2}^{(i j)} \mathbf{X}\left(\mathbf{A}_{1}^{(i j)}\right)^{\mathbf{T}}=\mathrm{B}
$$

- Major steps:

1
$\boldsymbol{O}(\boldsymbol{n})$ Initialize each implicit solution $\mathbf{P}_{\boldsymbol{i}}, \mathbf{Q}_{\boldsymbol{i}}$ and the residual $\mathbf{U}_{\mathbf{1}}, \mathbf{U}_{\mathbf{2}}$
$\boldsymbol{O}(\boldsymbol{m})$ Construct block matrices $\mathbf{A}_{1}^{i j}$ $\mathbf{A}_{2}^{i j}, \mathbf{B}^{i j}$ by $\mathbf{N}_{\mathbf{1}}, \mathbf{N}_{\mathbf{2}}$

3 $\boldsymbol{O}(\mathrm{km})$
Iterate l times to solve l
block variables by BCD \& FASTEN-P+
4) $o\left(k^{2} l n\right)$ Update $\mathbf{P}_{i}, \mathbf{Q}_{i}$ and $\mathbf{U}_{\mathbf{1}}, \mathbf{U}_{\mathbf{2}}$; check stopping condition

- Details:

$$
\text { Till converge }\left(\left|\mid \mathbf{R} \|_{F}<\epsilon\right)\right.
$$

- Key idea: apply FASTEN-P+ instead of FASTEN-P in step 3;
- Overall Complexity: time: $\boldsymbol{O}\left(k m+\boldsymbol{k}^{2} l n\right)$; space: $\boldsymbol{O}(m+k l n)$;

Roadmap

- Motivations
- Background
- Proposed Algorithms for plain graphs
- Proposed Algorithms for attributed graphs
- Experimental Results
- Conclusions

Experimental Setup

- Datasets Summary:

Dataset Name	Category	\# of Nodes	\# of Edges
DBLP	Co-authorship	9,143	16,338
Flickr	User relationship	12,974	16,149
LastFm	User relationship	15,436	32,638
Aminer	Academic network	$1,274,360$	$4,756,194$
Linkedln	Social network	$6,726,290$	$19,360,690$

- Baseline methods
- Conjugate Gradient method (CG) [Saad Y. SIAM 03]
- Fixed Point (FP) [Saad Y. SIAM 03]

Exact methods

- FINAL-P+ \& FINAL-N+ [Zhang et al. KDD'16]
\} Approximated methods

Experimental Result - Efficiency

1. DBLP (9,143 nodes)
2. Flickr (12.974 nodes)
3. LastFm (15,436 nodes)
4. Aminer with 25 K nodes
5. Aminer with 100 K nodes
6. Aminer with 1.2 M nodes
7. Linkedln (6.7M nodes)

- Obs.: maximum speedup: > 10,000 times with $25 K$-node network.
- Better than approximated methods!

Experimental Result - Efficiency

Our method

1. DBLP (9,143 nodes)
2. Flickr (12.974 nodes)
3. LastFm (15,436 nodes)
4. Aminer with 25 K nodes
5. Aminer with 100 K nodes
6. Aminer with 1.2 M nodes
7. Linkedln (6.7M nodes)

- Obs.: maximum speedup: > 10,700 times with 25 K -node network.
- Better than approximated methods!

Experimental Result - Scalability

On plain graphs

On attributed graphs

- Obs.: FASTEN-P/N scales almost in accord with FINAL-P+/N+
- FASTEN-P+/N+ scale linearly with regard to \# of nodes (to over 1M)

Experimental Result - Effectiveness

- Obs.: FASTEN gives exact solution while having low running time.

Parameter Sensitivity

- e.g.: FASTEN-P:

- Obs.: the running time of FASTEN-P stays stable in a range of [14,60].

Roadmap

- Motivations
- Background
- Proposed Algorithms for plain graphs
- Proposed Algorithms for attributed graphs
- Experimental Results
- Conclusions

Conclusions

- Goal: Fast \& exact solver for (attributed) Sylvester equation.
- Solution: "FASTEN" family
-Key idea \#1: Generate Kronecker Krylov subspace
-Key idea \#2: Indirect solution representation
-Key idea \#3: Decomposition of Sylvester equation
-Key idea \#4: BCD \& FASTEN-P(+) on decomposed equation
- Results:
-Exact solution and linear scalability w.r.t the size of input graphs;
-Significant speedup against traditional methods.

Thank You!

