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Why Sylvester Equation?
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▪ Link users from different social networks 

[Zhang et al’ 16]

▪ Protein function prediction 

[Vishwanathan et al’ 10]

▪ Fraudulent transaction pattern matching 

[Du et al’ 17] 
▪ Chemical similarity calculation 

[Yu-Chen et al’ 15]

Query pattern

?

≈

Network alignment Graph kernel

Subgraph matching Node similarity

Transaction network Chemical compound network
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What is Sylvester Equation: an example on plain graph
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Adjacency matrix 

𝐀𝟏: 

G2

Solution matrix X of the 

Sylvester equation: 

𝐗 = 𝐀𝟐𝐗𝐀𝟏 + 𝐁
(𝐀𝟏 and 𝐀𝟐 are normalized)

▪ Sylvester equation 𝐗 = 𝐀𝟐𝐗𝐀𝟏 + 𝐁 gives the cross-network node similarity matrix 𝐗;

G1

Adjacency matrix: 

𝐀𝟐:

Prior knowledge of 

cross-network link: 𝐁

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

𝐁：
0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional 

orthology detection." Proceedings of the National Academy of Sciences (2008).
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What is Sylvester Equation: an example on attributed graph
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Input graphs with node attributes 

(colors and shapes)

Solution X of 𝐗 − σ𝒊,𝒋=𝟏
𝟐 𝐀𝟐

𝑖𝑗
𝐗(𝐀𝟏

𝑖𝑗
)𝐓 = 𝐁

(𝐀𝟏 and 𝐀𝟐 are normalized)

G1 G2

▪ Sylvester equation 𝐗 − σ𝒊,𝒋=𝟏
𝟐 𝐀𝟐

𝑖𝑗
𝐗(𝐀𝟏

𝑖𝑗
)𝐓 = 𝐁 gives the cross-network node similarity matrix 𝐗;

0 1 0 0

1 0 1 1

0 1 0 0

0 1 0 0

0 1 0 0

1 0 1 1

0 1 0 0

0 1 0 0

𝐀𝟏: 𝐀𝟐:𝐁：
0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional 

orthology detection." Proceedings of the National Academy of Sciences (2008).

e.g. 𝐀𝟏
𝟏𝟏:

0 0 0

0 0 0

0 0 0 0

0 0 0 0

𝐀𝟏
𝟏𝟐:

0 0 0 0

0 0

0 0 0 0

0 0 0 0
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▪ Given: 

• Two graphs 𝐺1 and 𝐺2 (the adjacency matrices are 𝐀𝟏 and 𝐀𝟐);

• The preference matrix 𝐁.

▪ Find: the solution 𝐗 of Sylvester equation:

or 𝐱 of its equivalent linear system:

▪ Mathematical details:

• 𝐀𝟏 ← α 1/2𝐃𝟏
−𝟏/𝟐

𝐀𝟏𝐃𝟏
−𝟏/𝟐

, 𝐀𝟐 ← α 1/2𝐃𝟐
−𝟏/𝟐

𝐀𝟐𝐃𝟐
−𝟏/𝟐

;

• 𝐃𝟏 and 𝐃𝟐 are the diagonal degree matrices of 𝐀𝟏 and 𝐀𝟐, 0 < 𝛼 < 1;

• 𝐖 = 𝐀𝟏 ⊗𝐀𝟐 (both are normalized), 𝐱 = vec(𝐗), 𝐛 = vec(𝐁).

Formal Definition of Sylvester Equation (Plain Graph)
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𝐗 − 𝐀𝟐𝐗𝐀𝟏
𝑇 = 𝐁

𝐈 −𝐖 𝐱 = 𝐛

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional orthology

detection." Proceedings of the National Academy of Sciences (2008).

G2G1

Solution matrix X
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▪ Given:

• Two graphs 𝐺1 = {𝐴1, 𝑁1}, 𝐺2 = {𝐴2, 𝑁2};

• The preference matrix 𝐁.

▪ Find: the solution 𝐗 of Sylvester equation:

or 𝐱 of its equivalent linear system:

▪ Mathematical details:

•𝐀𝟏
(𝒊𝒋)

← α 1/2𝐃𝟏
−𝟏/𝟐

𝐍𝟏
𝒊𝐀𝟏𝐍𝟏

𝒋
𝐃𝟏
−𝟏/𝟐

, 𝐀𝟐
(𝒊𝒋)

← α 1/2𝐃𝟐
−𝟏/𝟐

𝐍𝟐
𝒊𝐀𝟐𝐍𝟐

𝒋
𝐃𝟐
−𝟏/𝟐

;

•𝐀𝟏
(𝒊𝒋)

is the adjacency matrix ‘filtered’ by attribute i and j.

• 𝑙 : the number of node attributes, 𝐱 = vec(𝐗), 𝐛 = vec(𝐁).

Formal Definition of Sylvester Equation (Attributed Graph)
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𝑁2
𝑗
𝑎, 𝑎 = 1 if node 

𝑎 has node attribute 

𝑗, o/w it is zero.

𝐗 −෍
𝒊,𝒋=𝟏

𝒍

𝐀𝟐
𝑖𝑗
𝐗(𝐀𝟏

𝑖𝑗
)𝐓 = 𝐁

𝐈 −෍
𝒊,𝒋=𝟏

𝒍

(𝐀𝟏
𝑖𝑗
⊗𝐀𝟐

𝑖𝑗
) 𝐱 = 𝐛

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional 

orthology detection." Proceedings of the National Academy of Sciences (2008).

Solution matrix X

G2G1

0 0 0

0 0 0

0 0 0 0

0 0 0 0

𝐀𝟏
𝟏𝟏:
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Challenges of Solving the Sylvester Equation

▪ Size of 𝐀𝟏 ⊗𝐀𝟐: 

– 𝑛2 × 𝑛2 (for plain graphs with 𝑛 nodes and 𝑚 edges);

– Straightforward solver costs O(𝑛6) (time) and O(𝑚2) (space);

– State-of-the-art methods: time complexity at least O 𝑚𝑛 + 𝑛2 ;

▪ With node attributes:

– Add additional O(𝑙) complexity (for 𝑙 discrete node attributes);

▪ Size of solution matrix 𝐗: 

– 𝑛 × 𝑛 ;

– Usually not sparse;

– Limit the time/space complexity of the equation solver.

7

The Ω(𝑛2)
bottleneck

The Ω(𝑛2)
bottleneck
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▪ Obs.: Tradition methods: all attributed and provide exact solution, but high complexity;

Recent methods: at least 𝑂(𝑛2), and are often approximated/not attributed.

▪ Q: Can we have a solution that is attributed, exact, and more efficient?

Comparison of Methods for the Sylvester Equation
Algorithm Attributed 

(Y/N)

Exact 

Solution (Y/N)

Time 

Complexity

Space 

Complexity

Fixed Point (FP) [Vishwanathan et al’ 10] 𝑂(𝑛3) 𝑂(𝑚2)

Conjugate Gradient (CG) [Y Saad et al’ 03] 𝑂(𝑛3) 𝑂(𝑚2)

Sylv. [Vishwanathan et al’ 10] 𝑂(𝑛3) 𝑂(𝑚2)

ARK [U Kang et al’ 12] 𝑂(𝑛2) 𝑂(𝑛2)

Cheetah [L Li et al’ 10] 𝑂(𝑟𝑛2) 𝑂(𝑛2)

NI-Sim [C Li et al’ 10] 𝑂(𝑛2) 𝑂(𝑟2𝑛2)

FINAL-P [S Zhang et al’16] 𝑂(𝑚𝑛 + 𝑛2) 𝑂(𝑛2)

FINAL-NE [S Zhang et al’16] 𝑂(𝑙𝑚𝑛 + 𝑙𝑛2) 𝑂(𝑛2)

FINAL-N+ [S Zhang et al’16] 𝑂(𝑛2) 𝑂(𝑛2)

8

FASTEN-P 𝑂(𝑘𝑛2) 𝑂(𝑛2)

FASTEN-P+ 𝑂(𝑘𝑚 + 𝑘2𝑛) 𝑂(𝑚 + 𝑘𝑛)

FASTEN-N 𝑂(𝑚𝑛/+𝑘𝑛2/𝑙) 𝑂(𝑚/𝑙 + 𝑛2)

FASTEN-N+ 𝑂(𝑘𝑚 + 𝑘2𝑙𝑛) 𝑂(𝑚 + 𝑘𝑙𝑛)
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Roadmap

▪Motivations

▪Background

▪Proposed Algorithms for plain graphs 

▪Proposed Algorithms for attributed graphs

▪Experimental Results

▪Conclusions

9
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Krylov Subspace Method (KSM) for Linear System
▪ Minimal residual method for linear system 𝐀𝐱 = 𝐛 (𝐱 ∈ Rn):

– Extract 𝐱 from 𝑘-dimensional subspace of Rn 𝐱 ∈ 𝐱𝟎 + 𝐾𝑘

– Minimize residual 𝐫 = 𝐛 − 𝐀𝐱 ⊥ 𝐿𝑘 small scaled system

– Iteratively update 𝐱 and 𝐫 until 𝐫 2 is small enough

▪ Example:

– Let 𝐱𝟎 = 𝟎, 𝟎, 𝟎 𝑻(i.e. 𝐫𝟎 = 𝐛), extract 𝐱𝟏 ∈ 𝐾𝑘.

– Let 𝐱𝟏 = 𝐱𝟎 + 𝐳𝟎, minimize 𝐫 = 𝐫𝟎 − 𝐀𝐳𝟎 (𝐫 ⊥ 𝐿𝑘).

– Update 𝐱 in 3-d space.  

– ).
10 [1] Saad, Yousef. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.

𝐿𝑘 = 𝐀𝐾𝑘

𝐾𝑘

𝐫𝟎

𝑶

𝐀𝐳𝟎

𝐱𝟏

𝐫𝟎 − 𝐀𝐳𝟎: new residual

𝐿𝑘: Subspace of constraints

3 1 1
1 2 1
1 1 3

𝑥1
𝑥2
𝑥3

=
1
1
1

𝐀 𝐱 𝐛

6 6
11 6

𝑥1′

𝑥2′
=

4
5

𝐀′ 𝐲 𝐜
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KSM for Linear System (cont’d)
▪ Krylov subspace:

–𝐾𝑘 𝐀, 𝐫𝟎 = 𝑠𝑝𝑎𝑛{𝐫𝟎, 𝐀𝐫𝟎, 𝐀
2𝐫𝟎, … , 𝐀𝑘−1𝐫𝟎};

– Arnoldi process outputs 𝑖 orthonormal basis: 𝐕𝑖 = 𝐯1, 𝐯2, … , 𝐯𝑖 , 𝑖 ∈ {𝑘, 𝑘 + 1}

–𝐀𝐕𝑘 = 𝐕𝑘+1෩𝐇𝑘

▪ Krylov subspace-based Minimal Residual method:

– Extract solution from 𝑘-dimensional Krylov subspace (let 𝐾𝑘 = 𝐾𝑘 𝐀, 𝐫𝟎 );

– Minimize the residual 𝐫 and update solution at every iteration.

11

𝐀 𝐕𝑘 = 𝐕𝑘+1
෩𝐇𝑘

[1] Saad, Yousef. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.

Upper-Hessenberg

matrix

𝐫𝟎

𝐀𝐫𝟎

𝐯1

𝐯2



Arizona State University

▪ Arnoldi: 𝑂(𝑚) for sparse system;

▪ Solve small scaled system every iteration;

▪ Exact solution, no approximation needed;

▪ Upper-Hessenberg makes solving system faster.

Minimize residual 

𝐽 𝐲 = 𝐛 − 𝐀𝐱
2

= 𝐛 − 𝐀 𝐱0 + 𝐕𝑘𝐲 2

= ⋯
= ||𝛽𝐞1 − ෩𝐇𝑘𝐲||2

Advantages of KSM with Minimal Residual

12

equivalent to solve:

[1] Saad, Yousef. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.

• Details:

A x A’ yb b= =
Minimize residual

Update solution in 

original dimension

High dimensional system

Low dimensional system
෩𝐇𝑘𝐲 = 𝛽𝐞1

=

on Krylov subspace
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Challenges of Applying KSM on Sylvester Equation

▪ Size of 𝐈 −𝐖 𝐱 = 𝐛：

– Generate 𝐾𝑘2(𝐈 − 𝐀𝟏 ⊗𝐀𝟐, 𝐫𝟎) 𝑂 𝑛4 or 𝑂 𝑚2 in time/space cost;

▪ Size of 𝐈 − σ𝒊,𝒋=𝟏
𝒍 (𝐀𝟏

𝑖𝑗
⊗𝐀𝟐

𝑖𝑗
) 𝐱 = 𝐛：

– Generate 𝐾𝑘2(𝐈 − σ𝒊,𝒋=𝟏
𝒍 (𝐀𝟏

𝑖𝑗
⊗𝐀𝟐

𝑖𝑗
) , 𝐫𝟎) 𝑂(𝑙𝑛4) or 𝑂 𝑙𝑚2 cost. 

▪ Example: 

13

G2G1
Krylov subspace of 

𝐾𝑘2(𝐈 − 𝐀𝟏 ⊗𝐀𝟐, 𝐫𝟎):
16 dimension

0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

G2G1

𝐁𝐀𝟏
𝐀𝟐

*

* 
,… 

𝑙 multiplication

𝑛2 × 𝑛2

𝑛2 × 𝑛2

*
𝑛2 × 𝑛2
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Roadmap

▪Motivations

▪Background

▪Proposed Algorithms for plain graphs 

▪Proposed Algorithms for attributed graphs

▪Experimental Results

▪Conclusions
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Key Ideas

▪#1: Kronecker Krylov Subspace (KKS)

– Implicit construction of the original large Krylov subspace

–Largely reduce the time/space complexity 𝑂 𝑛4 𝑂 𝑛2

▪#2: MRES* on KKS with Implicit Solution Representation

–Solve small scaled system and update solution till converge

–Further reduce the time/space complexity 𝑂 𝑘𝑛2 𝑂 𝑘2𝑛 + 𝑘𝑚

*: MRES: Minimal Residual method

15
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Theorem: 𝐕𝑘 ⊗𝐖k forms 

the orthonormal basis of the 

Kronecker Krylov subspace; 

don’t need to be computed 

directly

Kronecker Krylov Subspace (Details)

16

▪ Step 1: Choose Arnoldi vectors 𝐠, 𝐟; 𝑂 𝑛2

▪ Step 2: Generate 𝐾𝑘 𝐀𝟏, 𝐠 ; 𝑂 𝑘𝑚

▪ Step 3: Generate 𝐾𝑘 𝐀𝟐, 𝐟 ; 𝑂(𝑘𝑚)

▪ Details:

– Choosing 𝐠, 𝐟 s.t. 𝐫𝟎 ∈ 𝐾𝑘 𝐀𝟏, 𝐠 ⊗ 𝐾𝑘(𝐀𝟐, 𝐟):

– If 𝐑𝟎 1
≤ 𝐑𝟎 ∞

, 

𝐟: 𝐑𝟎’s column of largest norm, 𝐠 = 𝐑𝟎
𝐓𝐟/ 𝐟 𝟐

𝟐

– If 𝐑𝟎 1
> 𝐑𝟎 ∞

, 

𝐠: 𝐑𝟎’s row of largest norm, 𝐟 = 𝐑𝟎
𝐓𝐠/ 𝐠 𝟐

𝟐

𝐾𝑘 𝐀𝟏, 𝐠 ⊗ 𝐾𝑘(𝐀𝟐, 𝐟)

𝐀𝟏𝐕𝑘 = 𝐕𝑘+1෩𝐇1 𝐀𝟐𝐖𝑘 = 𝐖𝑘+1
෩𝐇2

𝐕𝑘 = 𝐯1, 𝐯2, … , 𝐯𝑘 𝐖k = 𝐰1, 𝐰2, … ,𝐰𝑘

𝐈 −𝐖 𝐱 = 𝐛
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Example 

▪ Step 1: 𝐑𝟎 = 𝐁 (𝐱𝟎 = 𝟎), 𝐟 = 0,0,0,1 𝑇, 𝐠 = 1,0,0,0 𝑇;

▪ Step 2: 𝐾𝑘 𝐀𝟏, 𝐠 = 𝑠𝑝𝑎𝑛{ 0,0.7071,0.7071,0 ,𝑇 1,0,0,0 𝑇};

▪ Step 3: 𝐾𝑘 𝐀𝟐, 𝐟 = 𝑠𝑝𝑎𝑛{ 0,0.7071,0.7071,0 𝑇, 0,0,0,1 𝑇};

▪ 𝐾𝑘 𝐀𝟏, 𝐠 ⊗ 𝐾𝑘 𝐀𝟐, 𝐟 = 𝑠𝑝𝑎𝑛{𝐯𝟏 ⊗𝐰𝟏, 𝐯𝟏 ⊗𝐰𝟐, 𝐯𝟐 ⊗𝐰𝟏, 𝐯𝟐 ⊗𝐰𝟐}.

17

G2G1
0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

G2G1

𝐁 A2A1

𝐈 −𝐖 𝐱 = 𝐛

𝐯𝟏 𝐯𝟐

𝐰𝟏 𝐰𝟐
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Minimal Residual (Details):

18

▪ Step 1: Initial residual: 𝐫𝟎 = 𝐛 − 𝐈 − 𝛼𝐖 𝐱𝟎

▪ Step 2: Let new solution: 

𝐱 = 𝐱𝟎 + 𝐳𝟎, 𝐳𝟎 ∈ 𝐾𝑘 𝐀𝟏, 𝐠 ⊗ 𝐾𝑘(𝐀𝟐, 𝐟)

▪ Step 3: Minimize new residual: 

𝐑
𝟐
= 𝐖𝑘+𝟏

𝐓 𝐑𝟎𝐕𝑘+𝟏 − ෩𝐇𝟐𝐘෩𝐇𝟏
𝐓 + 𝐈𝑘+𝟏,𝑘𝐘𝐈𝑘+1,𝑘

𝑻

𝐅

▪ Both 𝐘 and 𝐂 are 𝑘 by 𝑘: small scaled system.

▪ Step 4: Update solution 𝐗 and residual 𝐑.

𝐗 ← 𝐗 + 𝐕𝐤𝐘𝐖𝐤
𝐓, 𝐑 ← 𝐑 − 𝐕𝐤+𝟏෩𝐇𝟏𝐘෩𝐇𝟐

𝐓𝐖𝐤+𝟏
𝐓 + 𝐕𝐤𝐘𝐖𝐤

𝐓

−𝐂 L(𝐘)

Small system L(𝐘) = 𝐂

Easy to solve!, 𝑘 ≪ 𝑛

Effectiveness: this method 

gives the exact solution of the 

Sylvester equation on plain 

graphs w.r.t. a tolerance 𝜖.

𝐈 −𝐖 𝐱 = 𝐛

Complexity: Time: 𝑂(𝑘𝑛2), 
Space: 𝑂(𝑛2)=
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FASTEN-P
▪ Major steps:

▪ Details:

– 𝐗 is often initialized as 𝟎, and 𝐑 = 𝐁;

– Overall Complexity: time: 𝑶(𝒌𝒏𝟐); space: 𝑶(𝒏𝟐); 
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𝑶(𝒏𝟐)
Choosing 

Arnoldi

vectors 𝐠 and 

𝐟 by 𝐑

𝑶(𝒌𝒎)
Arnoldi

Process on 𝐀𝟏

and 𝐀𝟐 to get 

the orthogonal 

basis 𝐕k, 𝐖k

𝑶(𝒊𝒕𝒆𝒓 ∗ 𝒌𝟑)
Solve the new 

linear system in 

low dimensional 

space 

𝐿 𝐘 = 𝐂

𝑶(𝒌𝒏𝟐)
Update 𝐗 and 

𝐑 by 𝐘 and 

check 

stopping 

condition

Till converge ( 𝐑
𝐹
< 𝜖, e.g. 10−8).
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Can we further scale up?

▪ Goal: complexity: from 𝑂(𝑛2) to linear

▪ Difficulties: 

–𝐗: 𝑛 × 𝑛, 𝑂(𝑛2) seems to be the lower bound;

–𝐗: in general not sparse.

▪ Observation: 

–𝐁 is often sparse and low-rank (sparse anchor links across network);

– If prior anchor links are unknown: 𝐁 is uniform (rank 1);

–𝐁 is low-rank        𝐗 must have low-rank property (see proof in paper).

▪ Solution:

– Implicit representation of residual 𝐑, intermediate solution 𝐗.
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𝐗 − 𝐀𝟐𝐗𝐀𝟏
𝑇 = 𝐁

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

G2G1

𝐁

𝑛 × 𝑛
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Kronecker Krylov Subspace with Low-rank Residual
▪ Step 1: Represent 𝐑𝟎 by low-rank matrices 𝐔𝟏, 𝐔𝟐: 𝑂(𝑛).

▪ Step 2: Choose Arnoldi vectors 𝐠, 𝐟: 𝑂(𝑟𝑛) (𝑟: rank of 𝐔𝟏, 𝐔𝟐)

▪ Step 3: Generate 𝐾𝑘 𝐀𝟏, 𝐠 , 𝐾𝑘 𝐀𝟐, 𝐟 : 𝑂(𝑘𝑚), and obtain

▪ Details: 

– Choosing 𝐠, 𝐟 (let 𝐫𝟏 = 𝐞𝐓𝐔𝟏𝐔𝟐, 𝐫𝟐 = 𝐔𝟏𝐔𝟐𝐞):

– If max 𝐫𝟏 ≥ max 𝐫𝟐 , 

𝐟 = 𝐔𝟏𝐔𝟐(: , 𝑖1), 𝐠 = 𝐔𝟐
𝐓𝐔𝟏

𝐓𝐟/ 𝐟 𝟐
𝟐 (𝑖1is the index of 𝐫𝟏’s largest entry)

– If max 𝐫𝟏 < max(𝐫𝟐), 

𝐠 = 𝐔𝟐
𝑻𝐔𝟏(𝑖2, : ), 𝐟 = 𝐔𝟏𝐔𝟐𝐠/ 𝐠 𝟐

𝟐 (𝑖2is the index of 𝐫𝟐’s largest entry）
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𝐀𝟏𝐕𝑘 = 𝐕𝑘+1෩𝐇1

𝐀𝟐𝐖𝑘 = 𝐖𝑘+1
෩𝐇2

𝐕𝑘 = 𝐯1, 𝐯2, … , 𝐯𝑘

𝐖k = 𝐰1, 𝐰2, … ,𝐰𝑘
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Example
▪ Step 1:

•𝐁: Assume each node in G1 has at most one 1-to-1 anchor link to G2.

•𝐑𝟎 = 𝐁 = 0,0,0,1 𝐓 ∗ 1,0,0,0 = 𝐔𝟏𝐔𝟐; 𝑂(𝑛).

▪ Step 2: Choose Arnoldi vectors, 𝐟 = 0,0,0,1 𝑇, 𝐠 = 1,0,0,0 𝑇; 𝑂(𝑟𝑛)

▪ Step 3: 

•𝐾𝑘 𝐀𝟏, 𝐠 = 𝑠𝑝𝑎𝑛{ 0,0.7071,0.7071,0 ,𝑇 1,0,0,0 𝑇}; 𝑂(𝑘𝑚)

•𝐾𝑘 𝐀𝟐, 𝐟 = 𝑠𝑝𝑎𝑛{ 0,0.7071,0.7071,0 𝑇 , 0,0,0,1 𝑇}; 𝑂(𝑘𝑚)
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G2G1
0 1 1 0

1 0 1 1

1 1 0 0

0 1 0 0

0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

G2G1

𝐁 A2A1
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Minimal Residual Method with Low-rank Representation

▪ Step 1: Obtain and solve small scaled system L(𝐘) = 𝐂. 

▪ Step 2: Implicit solution representation 𝐏 = 𝐏, 𝐕𝐤𝐘 , 𝐐 = [𝐐,𝐖𝐤
𝐓];

(Original updating: 𝐗 ← 𝐗 + 𝐕𝐤𝐘𝐖𝐤
𝐓)

▪ Step 3: Let 𝑳𝟐 = 𝑽𝒌+𝟏෩𝐇1𝐘෩𝐇2
𝑇, 𝐏𝟐 = 𝐖𝐤+𝟏

𝐓 , 𝐋𝟑 = 𝐕𝐤𝐘, 𝐏𝟑 = 𝐖𝐤
𝐓

Construct new residual 𝐔𝟏 = 𝐔𝟏, 𝐋𝟐, 𝐋𝟑 , 𝐔𝟐 = 𝐔𝟐
𝐓, 𝐏𝟐

𝐓, 𝐏𝟑
𝐓 𝐓

(Original updating:  𝐑 ← 𝐑 − 𝐕𝐤+𝟏෩𝐇𝟏𝐘෩𝐇𝟐
𝐓𝐖𝐤+𝟏

𝐓 + 𝐕𝐤𝐘𝐖𝐤
𝐓)

23

Complexity: 

Time: 𝑂(𝑘 𝑘 + 2 𝑛),
Space: 𝑂(𝑚 + 𝑘𝑛)

Low-rank property: If 𝐁 is 

rank 𝑟, the rank of 𝐗 is 

upper-bounded by 𝑖𝑡𝑒𝑟 ∗ 𝑟
(𝑖𝑡𝑒𝑟: the iteration number) 

𝐗 P
Q

Represented as

𝐑 𝐔𝟏

𝐔𝟐
Represented as
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FASTEN-P+
▪ Major steps:

▪ Details:

– : 𝐑
𝑭

can be computed as 𝑡𝑟𝑎𝑐𝑒(𝐔𝟐
𝐓 𝐔𝟏

𝐓𝐔𝟏 𝐔𝟐);

– Overall Complexity: time: 𝑶(𝒌𝒎+ 𝒌𝟐𝒏); space: 𝑶(𝒎+ 𝒌𝒏); 

24

𝑶(𝒌𝒎)
Arnoldi

Process on 𝐀𝟏

and 𝐀𝟐 to get 

the orthogonal 

basis 𝐕k, 𝐖k

𝑶(𝒊𝒕𝒆𝒓 ∗ 𝒌𝟑)
Solve the new 

linear system in 

low dimensional 

space 𝐿 𝐘 = 𝐂

𝑶(𝒓𝒏)
Choosing 

Arnoldi

vectors 𝐠
and 𝐟 by 𝐔𝟏, 

𝐔𝟐

𝑶(𝒌𝟐𝒏)
Update 𝐏, 

𝐐 and 𝐔𝟏, 𝐔𝟐

by 𝐘 and check 

stopping 

condition

1 2 3 4

Till converge ( 𝐑
𝐹
< 𝜖)

4
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Roadmap

▪Motivations

▪Background

▪Proposed Algorithms for plain graphs 

▪Proposed Algorithms for attributed graphs

▪Experimental Results

▪Conclusions
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Key Ideas

▪#1: Decomposition of Sylvester equation

–Decompose the equation to a inter-correlated Sylvester equation set

–Each decomposed equation is small-scaled & fast to solve

▪#2: Apply FASTEN-P(+) on decomposed equation

–Apply Block Coordinate Descent (BCD) on the whole equation set

–Efficiently solve every single equation by FASTEN-P(+)

26
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▪Observation:

– The solution matrix 𝐗 has block-diagonal structure

– The equation can be decomposed to:

– 𝐀1
𝑖𝑞

is a block of 𝐀1 of rows from attribute 𝑖 to columns of attribute 𝑞.

– Off-diagonal block: need not to be solved

– Diagonal block: apply Block Coordinate Descent (BCD)

𝐗𝒊𝑖 −෍

𝐪=𝟏

𝐥

𝐀𝟐
𝑖𝑞
𝐗𝑞𝑞 𝐀𝟏

𝑖𝑞
𝐓
= 𝐁𝑖𝑖

𝐗𝑖𝑗 = 𝐁𝑖𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑙, 𝑖 ≠ 𝑗)

Decomposition of Sylvester Equation

27

Diagonal block 

variables

Off-diagonal 

block variables

Solution matrix X

𝐗 −෍
𝒊,𝒋=𝟏

𝒍

𝐀𝟐
𝑖𝑗
𝐗(𝐀𝟏

𝑖𝑗
)𝐓 = 𝐁
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Apply FASTEN-P(+) on Decomposed Equation

▪Observation:

– When applying BCD: solve a non-attributed Sylvester equation each time

– e.g.: when solving 𝐗11, the equation becomes:

– Apply FASTEN-P(+) to solve the above equation. 

28

Diagonal block 

variables

𝐗11 − 𝐀2
11𝐗11(𝐀1

11)𝑇 = 𝐁11 +෍

𝑞≠1

𝑙

𝐀2
1𝑞
𝐗𝑞𝑞(𝐀1

1𝑞
)𝑇 = ෪𝐁𝟏𝟏

𝐗𝒊𝑖 −෍

𝐪=𝟏

𝐥

𝐀𝟐
𝑖𝑞
𝐗𝑞𝑞 𝐀𝟏

𝑖𝑞
𝐓
= 𝐁𝑖𝑖

𝐀1
11 𝐀2

11

෪𝐁𝟏𝟏

G1’ G2’
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𝐗11 − 𝐀2
11𝐗11 𝐀1

11 𝑇 + 𝐀2
12𝐗22 𝐀1

12 𝑇 = 𝐁11

𝐗22 − 𝐀2
21𝐗11 𝐀1

21 𝑇 + 𝐀2
22𝐗22 𝐀1

22 𝑇 = 𝐁22

𝐗12 = 𝐁12

𝐗21 = 𝐁21

▪ In this example, the attributed Sylvester equation is decomposed to:

Example

29

𝐗11 and 

𝐗22 are two 

2 by 2 

diagonal 

blocks

G2G1
0 1 0 0

1 0 1 1

0 1 0 0

0 1 0 0

0 1 0 0

1 0 1 1

0 1 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

Solution matrix X
𝐁

e.g. Solve non-attributed Sylvester 

equation on 𝐀𝟏
𝟏𝟏, 𝐀𝟐

𝟏𝟏 for 𝐗11:
𝐗 −෍

𝒊,𝒋=𝟏

𝟐

𝐀𝟐
𝑖𝑗
𝐗(𝐀𝟏

𝑖𝑗
)𝐓 = 𝐁

A2A1

Diagonal

Off-diagonal

1’

2’

3’ 4’

෪𝐁𝟏𝟏1

2

43
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FASTEN-N

▪ Major steps:

▪ Details: 

– : 𝐍𝟏, 𝐍𝟐 are the node attribute matrices of 𝐀𝟏 and 𝐀𝟐. 

– Overall Complexity: time: 𝑶(𝒎𝒏/𝒍 + 𝒌𝒏𝟐/𝒍); space: 𝑶(𝒎/𝒍 + 𝒏𝟐); 
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Initialize 

each 

diagonal 𝐗𝑖𝑖

and the 

residual 𝐑

𝑶(𝒎)
Construct 

block 

matrices 𝐀1
𝑖𝑗

, 

𝐀2
𝑖𝑗

, 𝐁𝑖𝑗 by 

𝐍𝟏, 𝐍𝟐

𝑶(𝒎𝒏/𝒍)
Iterate 𝑙 times 

to solve 𝑙 block 

variables by 

BCD & 

FASTEN-P

𝑶(𝒌𝒏𝟐/𝒍)
Update 𝐗

and 𝐑; check 

stopping 

condition

1 2 3 4

2

𝐗 −෍
𝒊,𝒋=𝟏

𝒍

𝐀𝟐
𝑖𝑗
𝐗(𝐀𝟏

𝑖𝑗
)𝐓 = 𝐁

Till converge ( 𝐑
𝐹
< 𝜖)
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From FASTEN-N to FASTEN-N+
▪ Major steps:

▪ Details:

– Key idea: apply FASTEN-P+ instead of FASTEN-P in step       ;

– Overall Complexity: time: 𝑶(𝒌𝒎+ 𝒌𝟐𝒍𝒏); space: 𝑶(𝒎+ 𝒌𝒍𝒏);

31

𝑶(𝒎)
Construct 

block 

matrices 𝐀1
𝑖𝑗

, 

𝐀2
𝑖𝑗

, 𝐁𝑖𝑗 by 

𝐍𝟏, 𝐍𝟐

𝑶(𝒏)
Initialize each 

implicit 

solution 𝐏𝒊,𝐐𝒊

and the 

residual 𝐔𝟏,𝐔𝟐

𝑶(𝒌𝒎)
Iterate 𝑙 times 

to solve 𝑙
block variables 

by BCD & 

FASTEN-P+

𝑶(𝒌𝟐𝒍𝒏)
Update 

𝐏𝒊,𝐐𝒊 and

𝐔𝟏,𝐔𝟐; check 

stopping 

condition

1 2 3 4

𝐗 −෍
𝒊,𝒋=𝟏

𝒍

𝐀𝟐
𝑖𝑗
𝐗(𝐀𝟏

𝑖𝑗
)𝐓 = 𝐁

Till converge ( 𝐑
𝐹
< 𝜖)

3
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Roadmap

▪Motivations

▪Background

▪Proposed Algorithms for plain graphs 

▪Proposed Algorithms for attributed graphs

▪Experimental Results

▪Conclusions
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Experimental Setup

▪ Datasets Summary:

▪ Baseline methods

– Conjugate Gradient method (CG) [Saad Y. SIAM 03]

– Fixed Point (FP) [Saad Y. SIAM 03]

– FINAL-P+ & FINAL-N+ [Zhang et al. KDD’16]

33

Dataset Name Category # of Nodes # of Edges

DBLP Co-authorship 9,143 16,338

Flickr User relationship 12,974 16,149

LastFm User relationship 15,436 32,638

Aminer Academic network 1,274,360 4,756,194

LinkedIn Social network 6,726,290 19,360,690

Exact methods

Approximated methods
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Experimental Result - Efficiency

34

• Obs.: maximum speedup: > 10,000 times with 25K-node network.

• Better than approximated methods!

1. DBLP (9,143 nodes)

2. Flickr (12.974 nodes)

3. LastFm (15,436 nodes)

4. Aminer with 25K nodes

5. Aminer with 100K nodes

6. Aminer with 1.2M nodes

7. LinkedIn (6.7M nodes)

Our method
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Experimental Result - Efficiency

35

Our method

• Obs.: maximum speedup: > 10,700 times with 25K-node network.

• Better than approximated methods!

1. DBLP (9,143 nodes)

2. Flickr (12.974 nodes)

3. LastFm (15,436 nodes)

4. Aminer with 25K nodes

5. Aminer with 100K nodes

6. Aminer with 1.2M nodes

7. LinkedIn (6.7M nodes)
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Experimental Result - Scalability

36

Our method

On plain graphs On attributed graphs

Our method

• Obs.: FASTEN-P/N scales almost in accord with FINAL-P+/N+ 

• FASTEN-P+/N+ scale linearly with regard to # of nodes (to over 1M)
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Experimental Result - Effectiveness

37

On plain graphs On attributed graphs

0

Our method

• Obs.: FASTEN gives exact solution while having low running time.
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Parameter Sensitivity

38

0

• Obs.: the running time of FASTEN-P stays stable in a range of [14,60].

• e.g.: FASTEN-P:
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Roadmap

▪Motivations

▪Background

▪Proposed Algorithms for plain graphs 

▪Proposed Algorithms for attributed graphs

▪Experimental Results

▪Conclusions
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Conclusions

▪ Goal: Fast & exact solver for (attributed) Sylvester equation.

▪ Solution: “FASTEN” family

– Key idea #1: Generate Kronecker Krylov subspace 

– Key idea #2: Indirect solution representation 

– Key idea #3: Decomposition of Sylvester equation

– Key idea #4: BCD & FASTEN-P(+) on decomposed equation

▪ Results:

– Exact solution and linear scalability w.r.t the size of input graphs;

– Significant speedup against traditional methods.
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Thank You!
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