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Why Sylvester Equation?

= |ink users from different social networks

= Protein function prediction
[Zhang et al’ 16]

[Vishwanathan et al’ 10]
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similarity calculation
[Yu-Chen al’ 15]

» Fraudulent transaction pattern m{sylves'ter Equat|°n
[Du et al’ 17]
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What is Sylvester Equation: an example on plain graph

G1 G2 o 0.040 | 0.047
Prior knowledge of
cross-network link: B o e e
o 0.040 | 0.047
~e - o 0.027 | 0.040 | 0.040
Adjacency matrix:
B: A,: Solution matrix X of the
0|0 |0]O Sylvester equation:
o(o 0|0 = AXAq +
o. 000 (A; and A, are normalized)
0|0 |0

= Sylvester equation X = A, XA, + B gives the cross-network node similarity matrix X;

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment.” Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional
orthology detection." Proceedings of the National Academy of Sciences (2008).




What is Sylvester Equation: an example on attributed graph

Gl G2 —

Prior knowledge of cross-
network link: B

VNN
Input graphs with node attributes Solution X of X — ¥7i_; A x(AP)T =
(colors and shapes) (A; and A, are normalized)
Ayl B Az’ e.g. All: AY:
, O Bk o o oo
000 ]0O 1 o lo o 5 To
0010 (O 0 ofo|o]oO 0o|o0]|0]|oO
010 .o 0 ofo|o0]oO 0o|o0]|0]|oO

= Sylvester equation X — ZﬁjzlA(zij)X(A(lij))T = B gives the cross-network node similarity matrix X;

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment.” Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional
orthology detection." Proceedings of the National Academy of Sciences (2008).




Formal Definition of Sylvester Equation (Plain Graph)

= Given: Gl G2
* Two graphs G; and G, (the adjacency matrices are A; and Az);A A

* The preference matrix B.

= Find: the solution X of Sylvester equation;: X —A;XA;" =B

or x of its equivalent linear system: | (I—W)x=Db

" Mathematical detalls:

~1/2 ~1/2 ~1/2 ~1/2. il
* Aj <« 1/2D1 / A1D1 / , Ay « 1/2D2 / AzDz / ) Solution matrix X
 D; and D, are the diagonal degree matrices of A; and A,, 0 < a < 1;
c W= A; ® A, (both are normalized), x = vec(X), b = vec(B).

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment."” Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional orthology
detection." Proceedings of the National Academy of Sciences (2008).




Formal Definition of Sylvester Equation (Attributed Graph)

= Given: NJ(a,a) = 1ifnode  G1 G2
a has node attribute [ |
* Two graphs Gy = {41, N1}, G, = {4, N, }; j, o/w it is zero.

VN P N

* The preference matrix B.

= Find: the solution X of Sylvester equation: x - » APxAPT =B
ij=

or x of its equivalent linear system:

l .. ..
[l - e AS”)] x=b :
Lj=1 ’

" Mathematical detalils:

o A 1/2n~ V2 i Ipn~1/2 A@) 1/2n~1/2 i Ip-1/2.
Ay” < at Dy TNIANG D, L AT e oDy N AR NG D, Solution matrix X
-A(lij) IS the adjacency matrix ‘filtered’ by attribute i and j. All. o 0
1- o ofo
e[ : the number of node attributes, x = vec(X), b = vec(B). 0jojojo

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment.” Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[2] Singh, Rohit, Jinbo Xu, and Bonnie Berger. "Global alignment of multiple protein interaction networks with application to functional
orthology detection." Proceedings of the National Academy of Sciences (2008).




Challenges of Solving the Sylvester Equation

= Size of A} ® Ay:
—n? x n? (for plain graphs with n nodes and m edges); The Q(n?)
— Straightforward solver costs 0(n°) (time) and 0(m?) (space); SOEMEE

— State-of-the-art methods: time complexity at least O(mn + n?) ;

= With node attributes:
— Add additional O(l) complexity (for [ discrete node attributes);

= Size of solution matrix X:

—nXxXn, The Q(n?)
— Usually not sparse; bottleneck

— Limit the time/space complexity of the equation solver.
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Comparison of Methods for the Sylvester Equation

Algorithm Attributed Exact Time Space
(Y/N) Solution (Y/N) Complexity Complexity
Fixed Point (FP) [Vishwanathan et al’ 10] v v 0(n3) 0(m?)
Conjugate Gradient (CG) [Y Saad et al’ 03] v v 0(n3) 0(m?)
Sylv. [Vishwanathan et al’ 10] v v 0(n®) 0(m?)
a ARK [U Kang et al’ 12] v X 0(n?) 0(n?) h
Cheetah [L Li et al’ 10] v ¥ 0(rn?) 0(n%) -
i : , 2 272 o @
NI-Sim [C Li et al’ 10] ¥ 4 0(n*) O(r<n<) = O
FINAL-P [S Zhang et al’'16] ¥ v 0(mn + n?) 0(n?) o ~
7))
FINAL-NE [S Zhang et al’16] v v O(lmn + In?) 0(n?)
< FINAL-N+ [S Zhang et al'16] N X 0(n?) o(n?)
. FASTEN-P K D 0(kn?) om?» | =
SN O m
RecEAPMIGs: at least 0(n?), anare often apﬁroximal@@%t"‘aﬁ?iﬁhted.a(m thn) | 4
= Q: Can we RaggBNsOlution that is attributed,exact, andmore etifehent?kn®/l) 0(m/l + n?) '%;
L FASTEN-N+ N v~ O(km + k?In)  O(m+kin))
° DATA Arizona State University
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Roadmap
= Motivations v~
= Background

=" Proposed Algorithms for plain graphs

=" Proposed Algorithms for attributed graphs
= Experimental Results

® Conclusions
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Krylov Subspace Method (KSM) for Linear System
= Minimal residual method for linear system Ax = b (x € R"):
— Extract x from k-dimensional subspace of R" X € Xg + K},

—Minimize residualr=b — Ax 1 L, small scaled system

— Iteratively update x and r until |r|, is small enough [r — Azy: new residual

O Example' L;: Subspace of constraints
3 1
4
2 s H [ -
1 2 111 H
A C

—Letxq = [0, O 0]7(. e r, = b), extract X1 e K.

—Let x; = Xg + Zg, MINiMize r =ry — Azy (r L L;).

— Update x in 3-d space.

I [1] Saad, Yousef. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.



KSM for Linear System (cont’d)

= Krylov subspace: . v,
~ K (A, rg) = span{ry, Ary, A®ry, ..., A¥"1ry}; {/‘\(ro L_. v,
—Arnoldi process outputs i orthonormal basis: V; = [vq,Vv,, ..., v;],i € {k, k + 1}
~AVy, =V H,

% Upper-Hessenberg
matrix

= Krylov subspace-based Minimal Residual method:

— Extract solution from k-dimensional Krylov subspace (let K;, = K. (A, 1p));

—Minimize the residual r and update solution at every iteration.

[1] Saad, Yousef. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.



Advantages of KSM with Minimal Residual

= Arnoldi: O(m) for sparse system;

. . e Detalls:
= Solve small scaled system every iteration; Minimize residual
= Exact solution, no approximation needed,; J@y) =||b - Ax”z
= Upper-Hessenberg makes solving system faster. = ||b — A(xy + ka)||2
Minimize residual =llIBer = Hyyll;
A X |=|b on Krylov subspace ALY =|P A\
y P _ : equivalent to solve:
Low dimensional system —
Update solution in Hey = feq

original dimension

N -|

[1] Saad, Yousef. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.



Challenges of Applying KSM on Sylvester Equation

= Size of (I —W)x = b: nexnd
—Generate K2(1 — A; & Az, Io) 0(n*) or 0(m?) in time/space cost; =~
] .. .. nZXnZ . TlZXle
- N ‘ 'l multiplication
~Generate K,2(1 — 21 (AY’® AY”), 1) == 0(In*) or 0(lm?) cost. A
~é
= Example:
Gl (oo oo G2
g 8 g 8 Krylov subspace of
I o o [o Kkz(_l — A_l ® Az, Tp):
16 dimension
B
13 DATA Arizona State University



Roadmap
= Motivations v~
= Background v~

" Proposed Algorithms for plain graphs

=" Proposed Algorithms for attributed graphs
= Experimental Results

® Conclusions
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Key Ideas
= #1: Kronecker Krylov Subspace (KKS)

—Implicit construction of the original large Krylov subspace

—Largely reduce the time/space complexity 0(n*) 0(n?)

= #2. MRES* on KKS with Implicit Solution Representation
—Solve small scaled system and update solution till converge

—Further reduce the time/space complexity 0(kn?) O(k?n + km)

** MRES: Minimal Residual method

15 DI_Aa-II:)A Arizona State University



Kronecker Krylov Subspace (Details) a-wx=b
= Step 1: Choose Arnoldi vectors g, f; 0(n?)
= Step 2: Generate K, (A1, 8); 0(km)
= Step 3: Generate K, (A,,f); O(km)

= Detalls: V, = [Vy,Vy, oo, Vi ]
—ChOOSing g, f s.t. I'o (S Kk(Al»g) ® Kk(Az,f):

Ki(Aq,8) ®Ki(Ay, D))

A1V, = Vk+1ﬁ1

1 [[Rol|, < [IRol|, (Theorem: V, ® W forms

f: Ry’s column of largest norm, g = Ry f/|f|3 the orthonormal basis of the
Kronecker Krylov subspace;
don’t need to be computed

g: Ry’s row of largest norm, f = R} g/|g|5 \directly )

~If |[Rol, > |IRol| .

16 DLAa-II-)A Arizona State University



Example a-wx=b

= Step 1: Ry = B (xo = 0), f = [0,0,0,1]7, g = [1,0,0,0]7;

= Step 2: K, (A, 8) = span{[0,0.7071,0.7071,0],” [1,0,0,0]7};
Vi Vy

= Step 3: K, (A, f) = span{[0,0.7071,0.7071,0]7,[0,0,0,1]7};
Wy Wy

" Ki(Aq,8) Q Ki(Az, f) = span{vy @ wy, Vi @ Wa, V2, @ Wy, Vv, @ W},

Gl 0|0 (0|0 G2
0|0 |0 (O
0|0 |0 (O
I o o [o
17 DATA Arizona State University



Minimal Residual (Details): a-wx=b
= Step 1: Initial residual: rg = b — (I — aW)x,

= Step 2: Let new solution: Effectiveness: this method

X =Xg + Zg, Zg € Kx(A1,8) ® Ki. (A, ) gives the exact solution of the
Sylvester equation on plain

= Step 3: Minimize new residual:
graphs w.r.t. a tolerance e.

||R||2 = “MkT+1R0Vk+1J*[ﬁzYﬁI + Ik+1,kYI£+1,k]‘
—C £(Y)

F

Complexity: Time: 0(kn?),
Space: 0(n?)

Small system £(Y) = C

= Both Y and C are k by k: small scaled system.
= Step 4: Update solution X and residual R. Easy to solve!, k < n
X <X+ V,YW!, R« R~-V H,YHIW!, ; + V, YW!

18 DLAa-II-)A Arizona State University



FASTEN-P

= Major steps:

0(n%)
Choosing
Arnoldi
vectors g and
f by R

= Detalls:

0(km) O(iter * k>)
Arnoldi Solve the new
Process on A4 linear system in
and A, to get low dimensional
the orthogonal space
basis Vi, Wi L(Y)=C

Till converge (|IR|| . <€ e.g. 107%).

— X Is often Initialized as 0, and R = B:

— Overall Complexity: time: 0(kn?); space: 0(n?%);

0(kn?)
Update X and
R by Y and
check
stopping
condition

19
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Can we further scale up? x-a,xa," =8

G1 G2
_ _ ojo|ofo
= Goal: complexity: from 0(n?) to linear 30AE
o _ 0|0|0]|0
= Difficulties: FEOE
—~X: n xn, 0(n?) seems to be the lower bound:; ~<_B--

—X: In general not sparse.

= Observation:.
— B Is often sparse and low-rank (sparse anchor links across network);

—If prior anchor links are unknown: B is uniform (rank 1);

— B Is low-rank X must have low-rank property (see proof in paper).
= Solution: HI:I
nxn
—Implicit representation of residual R, intermediate solution X.

20 DLAa-II-:)A Arizona State University



Kronecker Krylov Subspace with Low-rank Residual
= Step 1: Represent Ry by low-rank matrices Uy, U,: O(n).

= Step 2: Choose Arnoldi vectors g, f: O(rn) (r: rank of Uy, U,)
= Step 3: Generate K, (A4, 8), K, (A, f): O(km), and obtain

" Detalls:

A1Vy = Vk+1ﬁ1

| V., = vy, vy, ..., Vi ]
— ChOOSIﬂg g, f (Iet r{ = eTUle, Ip = U1U2€):

— If max(r;) = max(ry), CAzwk = W1 H, A
f = U Uz(:,0q), g = U3 U f/If]5 (iyis the index of ry’s largest entry) Wy = [wy, W, ..., W]
N Y,

— If max(ry) < max(ry),

g = UlU,(i,,:), f = U,U,8/|gl5 (i,is the index of ry’s largest entry)

21 DLAa-II-)A Arizona State University



Example
= Step 1.

e B: Assume each node in G1 has at most one 1-to-1 anchor link to G2.

R, = B =10,0,0,1]" % [1,0,0,0] = U;U,; O(n).
= Step 2: Choose Arnoldi vectors, f = [0,0,0,1]%, g = [1,0,0,0]%; O(rn)

= Step 3:

e K, (A, 8) = span{[0,0.7071,0.7071,0],7 [1,0,0,0]7}; O (km)
e K, (A,, f) = span{[0,0.7071,0.7071,0]7, [0,0,0,1]7}; O(km)

Gl

0

0

0
B

|0 |0 | O

|0 |0 |0

22
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Minimal Residual Method with Low-rank Representation

= Step 1: Obtain and solve small scaled system £Z(Y) = C.
= Step 2: Implicit solution representation P = [P, VY], Q = [Q, W} ];
(Original updating: X « X + Vi YWy,) Low-rank property: If B is
Q| rank r, the rank of X is
 Ql Repiesenicd as ) upper-bounded by iter +
L (iter: the iteration number)
= Step 3: Let L, = V)., {H,YHY, P, = W |, L; = VY, P; = W)

_ T
Construct new residual U; = [U4,L,, L3], Uy = [Ug Pg; Pg]

(Original updating: R « R — Vi, {H; YHIW, ; + Vi, YW Complexity:

DATA : R
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FASTEN-P+

= Major steps:

© omn © oim ©oditer « k) O ow*n)

Choosing Arnoldi Solve the new Update P,
Arnoldi - | Processon A, linear system in Qand U4, U,
. . —
vectors g and A, to get low dimensional by Y and check
and f by Uy, the orthogonal space L(Y) =C stopping
U, basis Vi, Wy condition

Till converge (|IR|| < €)

= Detalls:

- @: |IRI|, can be computed as trace(Uz (U1 Uq)Uy);
— Overall Complexity: time: O(km + k*n); space: O(m + kn);

24 DLAa-II-:)A Arizona State University



Roadmap

= Motivations v~

= Background v~

" Proposed Algorithms for plain graphs

=" Proposed Algorithms for attributed graphs
= Experimental Results

® Conclusions
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Key Ideas

= #1. Decomposition of Sylvester equation
—Decompose the equation to a inter-correlated Sylvester equation set
—Each decomposed equation is small-scaled & fast to solve

m 2. Apply FASTEN-P(+) on decomposed equation

—Apply Block Coordinate Descent (BCD) on the whole equation set
—Efficiently solve every single equation by FASTEN-P(+)

26 DI_Aa-II-:)A Arizona State University



Decomposition of Sylvester Equation

_ l y y
= Observation: | x-) _ axa{" -

— The solution matrix X has block-diagonal structure

‘Solution matrix X

— The equation can be decomposed to:

- & T ) Diagonal block
x”—ZA‘;XW(Alq) = Bl variables

q=1 i
5 Off-diagonal
XU = BY 1<i,j<li#+
- A=ij=Li=)) <[ block variables ]

—Aflq IS a block of A; of rows from attribute i to columns of attribute q.

— Off-diagonal block: need not to be solved

27 DI_Aa-II:)A Arizona State University



Apply FASTEN-P(+) on Decomposed Equation

= Observation:
1
. : T )
xii _ Z Aldyaa(pld) — gii Diagonal block
L 2 ( 1) variables

—When applying BCD: solve a non-attributed Sylvester equation each time

—e.g.: when solving X!, the equation becomes:

l )
Xll _ A121X11(A111)T B11 + z AlquqQ(A11Q)T — évl
q*1 J
— Apply FASTEN-P(+) to solve the above equation. a1 | AL AL | oo
T ];71
28 DATA Arizona State University
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Example

" In this example, the attributed Sylvester equation is decomposed to:

G1 4 X1 and )
g 8 g g X22 are two
Y o|o|ofo “ _2by 2
5o . . . diagonal
U~ blocks
B Solution matrix X >
2 g y
X — z AT = B e.g. Solve non-attributed Sylvester
ij=1

equation on A3, AL for x11:

[ XM - [ASXM(ATDT + APX*?(AF)"] = B B!
11X% = [A7 XTH(AT)T + AFX*?(AT)] = B 3 g
&21 = 1321 Diagonal
-  Off-diagonal © 0 © 0
. DATA
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FASTEN-N
= Major steps:

elnitialize © om) © ommn/y QO(an/ 1)

l .. ..
X — Z A(ZLJ)X(A(ll]))T — B
ij=1

each Construct lterate [ times Update X
diagonal X block to solve [ block and R; check
and the matrices A7, variables by stopping
residual R A;, BY by BCD & condition
N;, N, FASTEN-P
Till converge (|IR||, < €)
= Detalls:

—@ : N;, N, are the node attribute matrices of A; and A,.
—Overall Complexity: time: O(mn/l + kn?/1); space: O(m/l + n?);

30 DLAa-II-:)A Arizona State University



From FASTEN-N to FASTEN-N+ X _Zf__ AR AT = B

= Major steps:

1) o(n) 2 O(m) ® 0(km) °0(kzln)

Initialize each Construct Iterate [ times Update
implicit block to solve ! P;,Q; and

solution P;,Q; matrices A7, block variables U,,U,; check
and the A‘zf B/ by by BCD & stopping

residual U4,U, N;, N, FASTEN-P+ condition

Till converge (|IR|| . < €)
= Detalls:
— Key idea: apply FASTEN-P+ instead of FASTEN-P in step e;

— Overall Complexity: time: 0(km + k*In); space: O0(m + kin);

31 DLAa-II-)A Arizona State University



Roadmap

= Motivations v~

= Background

=" Proposed Algorithms for plain graphs

=" Proposed Algorithms for attributed graphs v’
= Experimental Results

® Conclusions
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Experimental Setup

= Datasets Summary:

Dataset Name | Category # of Nodes # of Edges

DBLP Co-authorship 9,143 16,338
Flickr User relationship 12,974 16,149
LastFm User relationship 15,436 32,638
Aminer Academic network 1,274,360 4,756,194
LinkedIn Social network 6,726,290 19,360,690

= Baseline methods
— Conjugate Gradient method (CG) [Saad Y. SIAM 03]

— Fixed Point (FP) [Saad Y. SIAM 03]
_ FINAL-P+ & FINAL-N+ [Zhang et al. KDD’16] } Approximated methods

} Exact methods

33 DLAa-II-:)A Arizona State University



Experimental Result - Efficiency

&jxed Point IBFINAL- P+@EN P-FASW OU ' m eth Od
>3x10

v

10°}
) 1. DBLP (9,143 nodes)
-E 102+ 2. Flickr (12.974 nodes)
2 3. LastFm (15,436 nodes)
I= ot 4. Aminer with 25K nodes
2 5. Aminer with 100K nodes
% 6. Aminer with 1.2M nodes
— 10% 7. LinkedIn (6.7M nodes)

107"

1 2 3 4 ) 6 I
* Obs.: maximum speedup: > 10,000 times with 25K-node network.
» Better than approximated methods!

34 DI_Aa-II:)A Arizona State University



Experimental Result - Efficiency
&G_S:ixed Point.FINAL-N@-N -am, ‘ Our method
>3x10° D)@ m —
10 _

T 1. DBLP (9,143 nodes)

g 10 2. Flickr (12.974 nodes)

é: 1 3. LastFm (15,436 nodes)
I 10 4. Aminer with 25K nodes
240 5. Aminer with 100K nodes
D 6. Aminer with 1.2M nodes
~ o 7. LinkedIn (6.7M nodes)

1072

1 2 3 4 5 6 7
* Obs.: maximum speedup: > 10,700 times with 25K-node network.

» Better than approximated methods!
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Experimental Result - Scalability

On plain graphs On attributed graphs

S >3000
=900 T B ~—FASTEN-N+
- ' FASTEN-N
2500 | ——CG 2500 ——FINAL-N+ ||
D ——FINAL-P+ o G
o FASTEN-P _ . .|
g 2000 t —e=FASTEN-P+ 22000 Fixed Point
= i—
I;) 1500 1 0)1 500 |
c =
j= E1000 |
c 1000 | ] S
=
* d ’ >
500 | 'Our method soo! Our method
0

10* 10° -
Log(Number of Nodes) Log(Number of Nodes @

 Obs.: FASTEN-P/N scales almost in accord with FINAL-P+/N+
 FASTEN-P+/N+ scale linearly with regard to # of nodes (to over 1M)

36 DI_Aa-II:)A Arizona State University



Experimental Result - Effectiveness

. On plain graphs On attributed graphs
10" "® Fixed Point | % @B & FASTEN-P+
* FINAL-N+ : 10741 | > FASTEN-P
® CG - ® CcG
10| [> FASTEN-N : * FINAL-N+
(o & FASTEN-N+ : T 46| ™ Fixed Point
S S
QEL105 QEL
(@) o 108
@) @
—1 | —1
10 ]
,Our methodgin™|
| \ & N\ et

07— o . 2 » '
i 10° 10" 102 10° 107" w 10 102

Log(Running Time) Log(Running Time)
* Obs.: FASTEN gives exact solution while having low running time.
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Parameter Sensitivity

e.g.. FASTEN-P:

200

Running Time (s)
n
C)

-
(o)
o

100 | %

DBLP
—o-Flickr
N LastFm
i
"8
--------- R
0

Subspace S|ze

80

* Obs.: the running time of FASTEN-P stays stable in a range of [14,60].

38
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Roadmap

= Motivations v~

= Background

=" Proposed Algorithms for plain graphs

=" Proposed Algorithms for attributed graphs v’
= Experimental Results +~

® Conclusions
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Conclusions
= Goal: Fast & exact solver for (attributed) Sylvester equation. |
- 7 T . N Lgog(R;Jn;?i|ng Tir;ID;) 3
= Solution: “FASTEN” family s
—Key idea #1: Generate Kronecker Krylov subspace

Log(running time)
=)
F

—Key idea #2: Indirect solution representation

—Key idea #3: Decomposition of Sylvester equation

—Key idea #4: BCD & FASTEN-P(+) on decomposed equation £ e
" Results:

0
10 10° 10°
Log(Number of Nodes)

— Exact solution and linear scalability w.r.t the size of input graphs;
—Significant speedup against traditional methods. S

FINAL-N+ (S Zhang et al 18] % omy_ omd

AN ng et vd
DATA [ il x‘ v ol ‘;Jn(’jin ) i
0 Lab  AriZiiita State Uriversityess,
L FASTEN- V4 ¥ Okm + k2l O(m + kln)|



Thank You!
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