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Attributed Networks Are Everywhere

Financial: 

Stock 

Correlation

Bitcoin

Transaction

• Q: How to explore attributed networks? 

Node Attribute:

Age/gender/

interests…

Edge Attribute:

Friendship/like…

Node Attribute:

Education/skills/

occupation…

Edge Attribute:

Follow/inmail…

Node Attribute:

Stock type/price

Edge Attribute:

Stock correlation

Node Attribute:

Address/payments…

Edge Attribute:

Transaction types
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Inexact Matching

A: Attributed Subgraph Matching

• To find structures to your interest.

User

Engineer Market 

Investigator

Accountant Manager

?Query 

Graph:

?

? ?

Exact Matching

Data 

Graph
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Attributed Subgraph Matching Applications
Finding Chemical Substructures/ 

Similarities [OEChem TK library]

Protein-to-protein Interaction 

Network [A Vinayagam’ 14]

Financial Fraud Pattern Detection [Neo4j] Social Media Analysis [W Fan’ 12]

Account
Holder

1

Account
Holder

2

Account
Holder

3

SSN
2

SSN
2

Phone
Number

2

Credit
Card

Address
1

Bank
Account

Bank
Account

Bank
Account

Phone
Number

2

Credit
Card

Unsecured
Loan

Unsecured
Loan

and so on…

Subgraph Pattern

-> Fraud Pattern

Substructure 

-> chemical 

property

Graph 

patterns -> 

social 

patterns

Pathways in 

PPI -> 

Protein 

function

4



Arizona State University

Existing Methods for Attributed Subgraph Matching (MANY!)

• Q: What if the user does not know exactly what s/he is looking for?

• Obs: The User Needs to Provide the Accurate Query Graph.

Algorithm Author & 

Conference

Exact

Matching

Inexact 

Matching

Node

Attribute

Edge 

Attribute

Require no

Index 

Accurate

query

R-WAG/I-WAG/S-WAG S Roy et al. TKDE’ 15

MAGE R. Pienta et al. IEEE 

BigData’ 14

NeMa A. Khan et al. VLDB’ 

13

IncMatch W. Fan et al. 

SIGMOD’11

SIGMA M.Mongiovi et al. CSB’ 

09

TALE Y. Tian et al. ICDE’ 08

G-Ray H. Tong et al. KDD’ 07

… … … … … … … …
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Interactive Attributed Subgraph Matching

• An illustrative example:

• Given: 

• a social network with node attributes and edge attribute;

• an initial query with attributes;

• Find: the best matching subgraph(s) with query revision on-the-fly.

9
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Programming

VisualizationData Mining

Machine Learning

Face2Face
PhoneE-mail

Initial 

Query:

Data 

Network:

Attributes:
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Interactive Attributed Subgraph Matching (cont’d)

• An illustrative example (cont’d): Revising and matching process.

• Challenge: How to respond efficiently? 

• w/o re-running algorithm or re-building Graph indexes

7

Input Query Graphs

Resulting Matching Subgraphs

Q1
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Roadmap

➢Motivation

➢Problem Definition

➢Proposed Solution: FIRST family

➢Experiments

➢Conclusions
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Problem Definition

Given: 

an undirected attributed network G = (𝑨, 𝑵𝑨, 𝑬𝑨), [𝑨: 𝑛 × 𝑛]

an undirected initial query graph Q = 𝑨𝒒, 𝑵𝒒, 𝑬𝒒 , [𝑨𝒒: 𝑘 × 𝑘]

the initial matching graph M
the revised query graph ෩𝑸;

Output: 

the updated 

matching 

subgraph ෩𝑴.

G

𝑛=12
𝑘=3

Data Network

(1)
Input:

Output:

1
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Roadmap:

➢Proposed Solution: FIRST family

➢Key ideas

➢Details

➢Experiments

➢Conclusions
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Key ideas

• Key Idea #1: Matching as cross-network node similarity

• Potential Benefit:
• Encodes both topology and attribute during matching

• Major computation: Sylvester equation

• Key Idea #2: Explore the smoothness of query graphs

• Potential Benefit:
• View the revised query as a perturbation of previous query

• Incrementally solve Sylvester equation for fast response
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Key Idea #1: Matching as cross-network node similarity

• Step 1: Find Similarity Matrix (S): FIRST-Q/N/E

• Intuition: cross-network node similarity [Zhang, et al KDD’16]

• Major Computation: to solve the Sylvester Equation

𝐖 : Kronecker graph of G and Q (filtered by node/edge attribute);

𝐬: Vectorized similarity matrix 𝐒;

𝐡: Vectorized preference matrix H.

𝐬 = 𝛼𝐖𝐬 + 1 − 𝛼 𝐡

S(2, 4)

1

1

1 2 3

2

3

76 983 542 10 11 12

𝐒(i, j): similarity between 

• the i-th node in query Q and 

• the j-th node in network G.

𝐒:
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Key Idea #1 (cont’d):

• Step 2: Find Matching Subgraph: Sim2Sub

• Intuition: 

1. From similarity matrix to permutation matrix X;

2. From permutation matrix to subgraph.

• Major Computation:

➢ Calculate Matching Indicator Matrix X (k by n). 

➢ How to: Use ‘goodness’ function 𝑔 𝐗 :

𝐗∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑔 𝐗

= 𝑎𝑟𝑔𝑚𝑎𝑥[− 𝐗𝐀𝐗′ − 𝐀𝐪
𝐹

2
+ 𝑎 ∗ 𝑡𝑟𝑎𝑐𝑒 𝐒𝐗′ − 𝑏 ∗ 𝐗𝐗′ − 𝐈

𝐹

2
]

1 2 3

Matching subgraph 

Connectivity
Quality of individual 

matching nodes

Permutation matrix
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Summary of steps in Key Idea #1

14

1 2 3

W s X

Filtered by 

attributes

Sylvester 

Equation
Sim2Sub𝑎𝑟𝑔𝑚𝑎𝑥 𝑔 𝐗

Kronecker Graph 

filtered by attributes

Similarity 

Vector

Matching 

Indicator Matrix

• Procedure: Input graphs       cross-network similarity vector matching subgraph

Step 1: FIRST-Q/N/E Step 2: Sim2Sub

𝐬 = 𝛼𝐖𝐬 + 1 − 𝛼 𝐡𝐖 = 𝐍[𝐄⨀ 𝐀⊗𝐀𝐪 ]𝐍
Local search+ matching 

nodes connecting
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Key Idea #2: Smoothness of query graphs

15

1 2 3

W s X

෩𝐖 𝐬 ෩𝐗

Observation:
෩𝐀𝐪 = 𝐀𝐪 + ∆𝐀𝐪

෩𝐍𝐪 = 𝐍𝐪 + ∆𝐍𝐪

෨𝐄𝐪 = 𝐄𝐪 + ∆𝐄𝐪
෩𝐖 = 𝐖+ ∆𝐖 𝐬 = 𝐬 + ∆𝐬 ෩𝐗 = 𝐗 + ∆𝐗

? ? ?
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Details:

N: the node attribute matrix of input networks (G & Q ):
N =  σ𝒑=𝟏

𝑲 𝑵𝑨
𝒑
⊗𝑵𝒒

𝒑
, K: the number of distinct node labels. 

E: the edge attribute matrix of input networks (G & Q ): 
E =  σ𝒍=𝟏

𝑳 𝑬𝑨
𝒍 ⊗𝑬𝒒

𝒍 , L: the number of distinct edge labels.

Scenarios 𝐖

Topology only 𝐖 = 𝐀⊗𝐀𝐪

Topology + node attribute 𝐖 = 𝐍 𝐀⊗𝐀𝐪 𝐍

Topology + node attribute + edge attribute 𝐖 = 𝐍[𝐄⨀ 𝐀⊗𝐀𝐪 ]𝐍
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FIRST-Q: Handle Topology Revision

Scenario 1: During query revision, only graph topology is changed.

• Goal: 

Fast computation of similarity vector after topology revision.

• Observation: 

1. We already have: 

2. The approximated similarity matrix:

• Solution: 

1. Calculate 𝐖 in pre-computing stage, only ∆𝐖 in interactive stage.

2. Low-rank approx. & matrix inverse lemma for fast computation.

ො𝐬 = 1 − 𝛼 (𝐈 − 𝛼 𝐖)−1𝐡

෩𝐖 = 𝐖+ ∆𝐖,𝐬 = 𝛼𝐖𝐬 + 1 − 𝛼 𝐡 , 

17
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1.

2.   Compute: node attribute matrix N, 

diagonal degree matrix D.

3. 

4. 

FIRST-Q: Handle Topology Revision

Pre-computing Stage:

1.  Low-rank approximation 

for data network:

2.  Store 𝐔𝐀, 𝚲𝐀.

Interactive Stage:
෩𝐀𝐪 ≈ 𝐔𝐐𝚲𝐐 𝐔𝐐

𝐓

ො𝐬 = 1 − α 𝐏−𝟏 [𝐃𝟏
−𝟏 + 𝛂𝐃𝟏

−𝟏𝐋

(𝚲−𝟏 − α𝐑𝐃𝟏
−𝟏𝐋)−1]𝐏−𝟏𝐡

𝐀 ≈ 𝐔𝐀𝚲𝐀 𝐔𝐀
𝐓

• How to (Details): 

18

𝐔𝐀

𝐔𝐀
𝐓𝚲𝐀

• Result:

➢Time complexity: 𝑂(𝑟2𝑡2𝑘𝑛 + 𝑟𝑡𝑘𝑛 + 𝐾2𝑘𝑛)
➢Space complexity: 𝑂(𝑘2𝑟𝑛 + 𝑚1)

𝐋

𝚲 R𝐖 =

By Sherman-Morrison Lemma 

Construct 𝐋,𝚲,R from the 

approximation of 𝐀 & 𝑨𝒒.

𝐔𝐐

𝐔𝐐
𝐓𝚲𝐐
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FIRST-N: Handle Node Attribute Revision

Scenario 2: During query revising, only node attribute is changed.

• Goal: 

Fast computation of similarity vector after node attribute revision.

• Observation: 

➢We already have: 

➢The topology keeps unchanged. 

➢ Low-rank approx. of both 𝐀 and 𝐀𝒒 (pre-compute).

• Solution: 

➢Calculate 𝐖 in pre-computing stage, only ∆𝐖 in interactive stage.

➢ Low-rank approx. & matrix inverse lemma for fast computation.

ො𝐬 = 1 − 𝛼 (𝐈 − 𝛼 𝐖)−1𝐡, ෪𝐍𝒒 = 𝐍𝒒 + ∆𝐍,  
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FIRST-N: Handle Node Attribute Revision

Pre-computing Stage:

1. Low-rank approximation:

2. Construct approximated 𝐖 :

3. Store 𝐋, 𝐑, 𝚲. 

Interactive Stage:

3. Calculate similarity vector:

ො𝐬 = 1 − α 𝐏−𝟏 [𝐃𝟏
−𝟏 + 𝛂𝐃𝟏

−𝟏𝐋

(𝚲−𝟏 − α𝐑𝐃𝟏
−𝟏𝐋)−1]𝐏−𝟏𝐡

1. Major Computation: Compute N,
diagonal degree matrix D with ෪𝐍𝐪.

2. Intermediate matrix:

P = 𝐃−𝟏/𝟐෪𝐍𝐪, 𝐃𝟏= 𝐏−𝟏𝐏−𝟏.

By Sherman-Morrison Lemma 

This can further speed up 

this algorithm compared 

to FIRST-Q.

• How to (Details): 

𝐀 ≈ 𝐔𝐀𝚲𝐀 𝐔𝐀
𝐓

𝐀𝒒 ≈ 𝐔𝐪𝚲𝐪 𝐔𝐪
𝐓
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• Result:

➢ Time complexity:𝑂(𝑟2𝑡2𝑘𝑛 + 𝑟𝑡𝑘𝑛 + 𝐾2𝑘𝑛)
➢Space complexity: 𝑂(𝑘2𝑟𝑛 + 𝑚1)

𝐋

𝚲 R𝐖 =
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FIRST-E: Handle Edge Attribute Revision

Scenario 3: During query revising, only edge attributes are changed.

• Goal: 

Fast computation of similarity vector after edge attribute revision.

• Observation: 
1. Pre-compute: The low-rank approximation of the edge attributed 

adjacency matrix (𝐄𝐀
𝐥 ⨀𝐀); 

2. Interactive: Only approx. of the revised edge attributed adjacency 

matrix.

• Solution keys:

1. Low-rank approximation;

2. matrix inverse lemma;

3. Block matrix property.
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FIRST-E: Handle Edge Attribute Revision (cont’d)

1. The edge attributed network: 

𝐄𝐀
𝐥 ⨀𝐀 ≈

Pre-computing Stage:

2. Store 𝐔𝐀
𝒍 , 𝚲𝐀

𝒍 ;

Interactive Stage:

3. ො𝐬 = 1 − α 𝐈 + 𝛂𝐋 𝚲−𝟏 − α𝐑𝐋
−1
𝐑 𝐡; 

(L= 𝐃−𝟏/𝟐𝐍𝐔,𝐑 = 𝐔𝐓𝐍𝐃−𝟏/𝟐).

1. Compute: N, D.

2. Construct block matrix U, 𝚲;

3. If the index l’ of changed edge 

attribute is available:

𝐄𝒒
𝒌⨀𝐀𝒒 ≈ (all k)

4. Store 𝐔𝐪
𝒌, 𝚲𝐪

𝒌 ;

• How to (Details): 

22

𝐕𝟏,𝐕𝟐,…, 𝐕𝐋

𝐘𝟏
𝐘𝟐

𝐘𝐋

U = …     , 𝚲 =

𝐔𝐀
𝒍

(𝐔𝐀
𝒍 )𝑻𝚲𝐀

𝒍

𝐔𝐪
𝒌

(𝐔𝐪
𝒌)𝑻𝚲𝐪

𝒌

𝚲𝐀
𝒍 𝚲𝐪

𝒌𝐔𝐀
𝒍 𝐔𝐪

𝒌⊗ ⊗𝐕𝒍 = 𝐘𝐣 =

This can further speed 

up computation.

• Time complexity: 𝑂(𝑟2𝑡2𝑘𝑛 + 𝐿𝑟𝑡𝑘𝑛 + 𝐾2𝐿𝑘𝑛)
• Space complexity: 𝑂(𝐿𝑟𝑡𝑘𝑛 + 𝑚1)

𝐄𝒒
𝒌⨀𝐀𝒒 ≈

(k ∈ l’)
𝐔𝐪
𝒌

(𝐔𝐪
𝒌)𝑻𝚲𝐪

𝒌
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Roadmap:

➢Experiments

➢Conclusions
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Experimental Setup
• Datasets Summary
Name # of Nodes # of Edges Node/Edge Attribute

DBLP 9,143 16,338 Node attribute only

Flickr 12,974 16,149 Node attribute only

LastFm 136,421 1,685,524 Node attribute only

ArnetMiner 1,274,360 4,756,194 Node & Edge attribute

LinkedIn 6,726,290 19,360,690 Node attribute only

• Baseline methods: 
• G-ray [Tong et al. KDD’ 07] 

• MAGE [Pienta et al. IEEE BigData’ 14]

• FINAL (and its variants) [Zhang et al. KDD’16]
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Experiment Result - Effectiveness (Nodes)

% Exact Matching Nodes (Higher is Better)

Observation: Generally FIRST family generates more accurate results.

Algorithms G-Ray MAGE FIRST

Star(N) 37.5 * 75.0

E-Star(N) 83.3 * 71.4

Line(N) 50.0 * 83.3

Loop(N) 27.3 * 71.4

Clique(N) 25.0 * 57.1

Star(NE) * 30.0 40.0

E-Star(NE) * 33.3 41.7

Line(NE) * 33.3 62.5

Loop(NE) * 27.3 33.3

Clique(NE) * 60.0 66.7

25

Query samples:

* = Not applicable
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Experiment Result - Effectiveness (Nodes)

% of Extra Nodes (Lower is better)

26

Algorithms G-Ray MAGE FIRST

Star(N) 62.5 * 0.0

E-Star(N) 0.0 * 0.0

Line(N) 50.0 * 0.0

Loop(N) 0.0 * 0.0

Clique(N) 25.0 * 0.0

Star(NE) * 50.0 0.0

E-Star(NE) * 0.0 0.0

Line(NE) * 33.3 0.0

Loop(NE) * 27.3 44.4

Clique(NE) * 40.0 0.0

Observation: Generally FIRST family generates more accurate results.

Query samples:

* = Not applicable
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Experiment Result - Effectiveness (Edges)

% Exact Matching Edges (Higher is better)

Algorithm G-Ray MAGE FIRST

Star(N) 33.3 * 57.1

E-Star(N) 60.0 * 50.0

Line(N) 40.0 * 60.0

Loop(N) 8.3 * 42.9

Clique(N) 7.1 * 12.5

Star(NE) * 0.0 14.3

E-Star(NE) * 7.1 9.0

Line(NE) * 0.0 14.3

Loop(NE) * 0.0 14.3

Clique(NE) * 0.0 12.5

27

Observation: Generally FIRST family generates more accurate results.

Query samples:

* = Not applicable
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Experiment Result - Effectiveness

% Extra Matching Edges (Lower is better)

28

Algorithm G-Ray MAGE FIRST

Star(N) 66.7 * 0.0

E-Star(N) 0.0 * 0.0

Line(N) 60.0 * 0.0

Loop(N) 8.3 * 0.0

Clique(N) 35.7 * 0.0

Star(NE) * 42.9 0.0

E-Star(NE) * 0.0 0.0

Line(NE) * 27.3 0.0

Loop(NE) * 30.0 42.9

Clique(NE) * 33.3 0.0

Observation: Generally FIRST family generates more accurate results.

Query samples:

* = Not applicable
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Experiment Result - Efficiency

• Observation: >15× speedup with 6,726,290-node data network.

Lower is better.

15.23× speed-up

𝐥𝐨
𝐠
(𝒓
𝒖
𝒏
𝒏
𝒊𝒏
𝒈
𝒕𝒊
𝒎
𝒆
)

29

Non-interactive 

methods

Interactive 

methods
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Experiment Result- Efficiency

• Observation: FIRST family is more efficient than baseline methods.

7.73× speed-up

30

𝐥𝐨
𝐠
(𝒓
𝒖
𝒏
𝒏
𝒊𝒏
𝒈
𝒕𝒊
𝒎
𝒆
)

Non-interactive 

methods

Interactive 

methods

Edge attributes added.

Lower is better.
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Experiment Result- Efficiency

• Observation: FIRST family scales linearly with regard to size of query graph.
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Experiments – Case Studies (on DBLP)

Query 

graphs:

Matching 

subgraphs:

Node attribute (conferences)

Name
Extra/intermediate node (in 

matching subgraph)
Name Matching node

people Query node
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Roadmap:

➢ Conclusions
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Conclusions

• Goal: Efficient Methods for Interactive Attributed Subgraph Matching.

• Results: 

➢ Linear scalability w.r.t the size of data network/query;

➢Better quality of matching subgraph against baselines.

• Solution: FIRST family 

➢ Key Idea #1: Subgraph matching as cross-network node similarity

➢ Key Idea #2: Explore the smoothness of query graphs
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