

FIRST: Fast Interactive Attributed Subgraph Matching

Presented by: Boxin Du Arizona State University

Arizona State University

Attributed Networks Are Everywhere

Attributed Subgraph Matching Applications

Existing Methods for Attributed Subgraph Matching (MANY!)

Algorithm	Author & Conference	Exact Matching	Inexact Matching	Node Attribute	Edge Attribute	Require no Index	Accurate query
R-WAG/I-WAG/S-WAG	S Roy et al. TKDE' 15	\checkmark	\checkmark	\checkmark	X	\checkmark	X
MAGE	R. Pienta et al. IEEE BigData' 14	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×
NeMa	A. Khan et al. VLDB' 13	\checkmark	\checkmark	\checkmark	×	\checkmark	×
IncMatch	W. Fan et al. SIGMOD'11	\checkmark	×	\checkmark	×	\checkmark	×
SIGMA	M.Mongiovi et al. CSB' 09	×	\checkmark	\checkmark	×	×	×
TALE	Y. Tian et al. ICDE' 08	\checkmark	\checkmark	\checkmark	\checkmark	×	×
G-Ray	H. Tong et al. KDD' 07	\checkmark	\checkmark	\checkmark	×	\checkmark	X

- **Obs:** The User Needs to Provide the **Accurate** Query Graph.
- **Q:** What if the user does not know exactly what s/he is looking for?

Interactive Attributed Subgraph Matching

- An illustrative example:
 - Given:
 - a social network with node attributes and edge attribute;
 - an initial query with attributes;
 - Find: the best matching subgraph(s) with query revision on-the-fly.

Interactive Attributed Subgraph Matching (cont'd)

• An illustrative example (cont'd): Revising and matching process.

w/o re-running algorithm or re-building Graph indexes

Roadmap

> Motivation

- Problem Definition
- Proposed Solution: FIRST family
- > Experiments
- Conclusions

Problem Definition

Given:

1 an undirected attributed network $G = (A, N_A, E_A)$, $[A: n \times n]$ 2 an undirected initial query graph $Q = (A_q, N_q, E_q)$, $[A_q: k \times k]$ 3 the initial matching graph M4 the revised query graph \tilde{Q} ;

Output:

the updated matching subgraph \widetilde{M} .

.ab

Roadmap:

> Motivation > Problem Definition Proposed Solution: FIRST family ➢ Key ideas > Details > Experiments > Conclusions

Key ideas

- Key Idea #1: Matching as cross-network node similarity
- Potential Benefit:
 - Encodes both topology and attribute during matching
 - Major computation: Sylvester equation
- Key Idea #2: Explore the smoothness of query graphs
- Potential Benefit:
 - View the revised query as a perturbation of previous query
 - Incrementally solve Sylvester equation for fast response

Key Idea #1: Matching as cross-network node similarity

- Step 1: Find Similarity Matrix (S): FIRST-Q/N/E
 - Intuition: cross-network node similarity [Zhang, et al KDD'16]
 - Major Computation: to solve the Sylvester Equation

$$\mathbf{s} = \alpha \mathbf{W}\mathbf{s} + (1 - \alpha)\mathbf{h}$$

Key Idea #1 (cont'd):

- Step 2: Find Matching Subgraph: Sim2Sub
 - Intuition:
 - 1. From similarity matrix to permutation matrix **X**;
 - 2. From permutation matrix to subgraph.
 - Major Computation:
 - \succ Calculate Matching Indicator Matrix X (k by n).

X(2,4)

> How to: Use 'goodness' function $g(\mathbf{X})$:

$$\mathbf{X}^{*} = argmax(g(\mathbf{X}))$$

= $argmax[-||\mathbf{X}\mathbf{A}\mathbf{X}' - \mathbf{A}_{\mathbf{q}}||_{F}^{2} + a * trace(\mathbf{S}\mathbf{X}') - b * ||\mathbf{X}\mathbf{X}' - \mathbf{I}||_{F}^{2}]$

j-th node in G, 0 otherwise.

X(i, j): 1 if the i-th node in **Q** matches the

Matching subgraphQuality of individualPermutation matrixConnectivitymatching nodes

Summary of steps in Key Idea #1

Procedure: Input graphs
 cross-network similarity vector
 matching subgraph

Key Idea #2: Smoothness of query graphs

Details:

Scenarios	W
Topology only	$\mathbf{W} = \mathbf{A} \bigotimes \mathbf{A}_{\mathbf{q}}$
Topology + node attribute	$\mathbf{W} = \mathbf{N} (\mathbf{A} \otimes \mathbf{A}_{\mathbf{q}}) \mathbf{N}$
Topology + node attribute + edge attribute	$\mathbf{W} = \mathbf{N}[\mathbf{E} \odot (\mathbf{A} \otimes \mathbf{A}_{\mathbf{q}})]\mathbf{N}$

N: the node attribute matrix of input networks (G & Q): N = $\sum_{p=1}^{K} N_A^p \otimes N_q^p$, K: the number of distinct node labels. E: the edge attribute matrix of input networks (G & Q): E = $\sum_{l=1}^{L} E_A^l \otimes E_q^l$, L: the number of distinct edge labels.

FIRST-Q: Handle Topology Revision

Scenario 1: During query revision, only graph topology is changed.

• Goal:

Fast computation of similarity vector after topology revision.

- Observation:
 - 1. We already have: $\mathbf{s} = \alpha \mathbf{W}\mathbf{s} + (1 \alpha)\mathbf{h}$, $\widetilde{\mathbf{W}} = \mathbf{W} + \Delta \mathbf{W}$,

2. The approximated similarity matrix:

$$\hat{\mathbf{s}} = (1 - \alpha)(\mathbf{I} - \alpha \widehat{\mathbf{W}})^{-1}\mathbf{h}$$

• Solution:

1. Calculate W in pre-computing stage, only ΔW in interactive stage.

2. Low-rank approx. & matrix inverse lemma for fast computation.

FIRST-Q: Handle Topology Revision How to (Details): \bullet **Revised Query** U₀^T Λ_0 **Interactive Stage: Pre-computing Stage:** U₀ 1. $\widetilde{\mathbf{A}}_{\mathbf{q}} \approx \mathbf{U}_{\mathbf{0}} \mathbf{\Lambda}_{\mathbf{0}} \mathbf{U}_{\mathbf{0}}^{\mathrm{T}}$ 1. Low-rank approximation for data network: Compute: node attribute matrix N, $\mathbf{A} \approx \mathbf{U}_{\mathbf{A}} \mathbf{\Lambda}_{\mathbf{A}} \mathbf{U}_{\mathbf{A}}^{\mathrm{T}}$ diagonal degree matrix D. (1) 3. $\widehat{\mathbf{W}} =$ $\mathbf{U}_{\mathbf{\Delta}}^{\mathrm{T}}$ Λ_A UA Construct L,Λ,R from the Data Network approximation of A & \hat{A}_{a} . 2. Store U_A , Λ_A . 4. $\hat{\mathbf{s}} = (1 - \alpha) \mathbf{P}^{-1} [\mathbf{D}_1^{-1} + \alpha \mathbf{D}_1^{-1}]$ • Result: $(\Lambda^{-1} - \alpha R D_1^{-1} L)^{-1} P^{-1} h$ \succ Time complexity: $O(r^2t^2kn + rtkn + K^2kn)$ > Space complexity: $O(k^2 rn + m_1)$ By Sherman-Morrison Lemma

FIRST-N: Handle Node Attribute Revision

Scenario 2: During query revising, only node attribute is changed.

• Goal:

Fast computation of similarity vector after node attribute revision.

Observation:

> We already have: $\hat{\mathbf{s}} = (1 - \alpha)(\mathbf{I} - \alpha \hat{\mathbf{W}})^{-1}\mathbf{h}, \widetilde{\mathbf{N}_q} = \mathbf{N}_q + \Delta \mathbf{N},$

The topology keeps unchanged.

 \succ Low-rank approx. of both A and A_q (pre-compute).

• Solution:

> Calculate W in pre-computing stage, only ΔW in interactive stage.

> Low-rank approx. & matrix inverse lemma for fast computation.

ATA

FIRST-E: Handle Edge Attribute Revision

Scenario 3: During query revising, only edge attributes are changed.

• Goal:

Fast computation of similarity vector after edge attribute revision.

- Observation:
 - 1. Pre-compute: The low-rank approximation of the <u>edge attributed</u> adjacency matrix $(E_A^1 \odot A)$;
 - 2. Interactive: Only approx. of the revised <u>edge attributed</u> adjacency matrix.

Solution keys:

- 1. Low-rank approximation;
- 2. matrix inverse lemma;
- 3. Block matrix property.

FIRST-E: Handle Edge Attribute Revision (cont'd)

How to (Details):

• Space complexity: $O(Lrtkn + m_1)$

Roadmap:

> Motivation > Problem Definition Proposed Solution: FIRST family ≻Key ideas > Three scenarios > Experiments

Conclusions

Experimental Setup

Datasets Summary

Name	# of Nodes	# of Edges	Node/Edge Attribute
DBLP	9,143	16,338	Node attribute only
Flickr	12,974	16,149	Node attribute only
LastFm	136,421	1,685,524	Node attribute only
ArnetMiner	1,274,360	4,756,194	Node & Edge attribute
LinkedIn	6,726,290	19,360,690	Node attribute only

- Baseline methods:
 - G-ray [Tong et al. KDD' 07]
 - MAGE [Pienta et al. IEEE BigData' 14]
 - FINAL (and its variants) [Zhang et al. KDD'16]

Experiment Result - Effectiveness (Nodes)

Query samples:

% Exact Matching Nodes (Higher is Better)

Algorithms	G-Ray	MAGE	FIRST
Star(N)	37.5	*	75.0
E-Star(N)	83.3	*	71.4
Line(N)	50.0	*	83.3
Loop(N)	27.3	*	71.4
Clique(N)	25.0	*	57.1
Star(NE)	*	30.0	40.0
E-Star(NE)	*	33.3	41.7
Line(NE)	*	33.3	62.5
Loop(NE)	*	27.3	33.3
Clique(NE)	*	60.0	66.7

* = Not applicable

Experiment Result - Effectiveness (Nodes)

Query samples:

% of Extra Nodes (Lower is better)

star(N) -Star(N)	62.5 0.0	*	0.0
-Star(N)	0.0		
· (NI)		*	0.0
ine(N)	50.0	*	0.0
oop(N)	0.0	*	0.0
Clique(N)	25.0	*	0.0
itar(NE)	*	50.0	0.0
-Star(NE)	*	0.0	0.0
ine(NE)	*	33.3	0.0
oop(NE)	*	27.3	44.4
lique(NE)	*	40.0	0.0
	bop(N) lique(N) tar(NE) -Star(NE) ne(NE) bop(NE) lique(NE)	Dop(N) 0.0 lique(N) 25.0 tar(NE) * -Star(NE) * ne(NE) * Dop(NE) * lique(NE) *	bop(N)0.0*lique(N)25.0*tar(NE)*50.0Star(NE)*0.0ne(NE)*33.3bop(NE)*27.3lique(NE)*40.0

* = Not applicable

Experiment Result - Effectiveness (Edges)

Query samples:	: % Exact Matching Edges (Higher is better)			
	Algorithm	G-Ray	MAGE	FIRST
	Star(N)	33.3	*	57.1
	E-Star(N)	60.0	*	50.0
—	Line(N)	40.0	*	60.0
	Loop(N)	8.3	*	42.9
	Clique(N)	7.1	*	12.5
	Star(NE)	*	0.0	14.3
/	E-Star(NE)	*	7.1	9.0
	Line(NE)	*	0.0	14.3
	Loop(NE)	*	0.0	14.3
	Clique(NE)	*	0.0	12.5
	* = Not applica	ble		

% Exact Matching Edges (Higher is better)

Experiment Result - Effectiveness

Query samples:

% Extra Matching Edges (Lower is better)

	Algorithm	G-Ray	MAGE	FIRST
	Star(N)	66.7	*	0.0
	E-Star(N)	0.0	*	0.0
	Line(N)	60.0	*	0.0
	Loop(N)	8.3	*	0.0
	Clique(N)	35.7	*	0.0
	Star(NE)	*	42.9	0.0
•	E-Star(NE)	*	0.0	0.0
	Line(NE)	*	27.3	0.0
	Loop(NE)	*	30.0	42.9
	Clique(NE)	*	33.3	0.0

* = Not applicable

Experiment Result - Efficiency

• Observation: >15× speedup with 6,726,290-node data network.

Experiment Result-Efficiency

• Observation: FIRST family is more efficient than baseline methods.

Experiment Result-Efficiency

• Observation: FIRST family scales linearly with regard to size of query graph.

Experiments – Case Studies (on DBLP)

Lab

Roadmap:

- > Motivation
- Problem Definition
- Proposed Solution: FIRST family
 - ≻ Key ideas
 - > Three scenarios
- > Experiments
 - > Setup
 - > Results
 - Case Study

Conclusions

Conclusions

- Goal: Efficient Methods for Interactive Attributed Subgraph Matching.
- Solution: FIRST family
 - Key Idea #1: Subgraph matching as cross-network node similarity
 - Key Idea #2: Explore the smoothness of query graphs
- Results:
 - Linear scalability w.r.t the size of data network/query;
 - > Better quality of matching subgraph against baselines.

	% Exact Matching Nodes		
Algorithm	G-Ray	MAGE	FIRST
Star(N)	37.5	*	75.0
E-Star(N)	83.3	*	71.4
Line(N)	50.0	*	83.3
Loop(N)	27.3	*	71.4
Clique(N)	25.0	*	57.1
Star(NE)	*	30.0	40.0
E-Star(NE)	*	33.3	41.7
Line(NE)	*	33.3	62.5
Loop(NE)	*	27.3	33.3
Clique(NE)	*	60.0	66 7