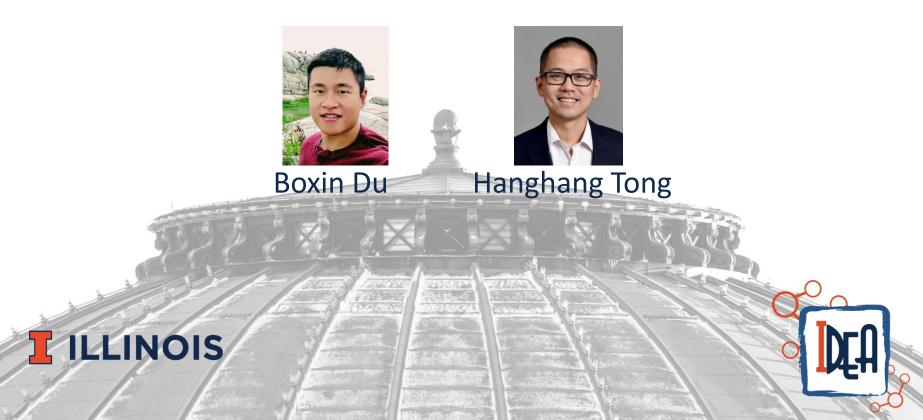
MrMine: Multi-resolution Multi-network embedding

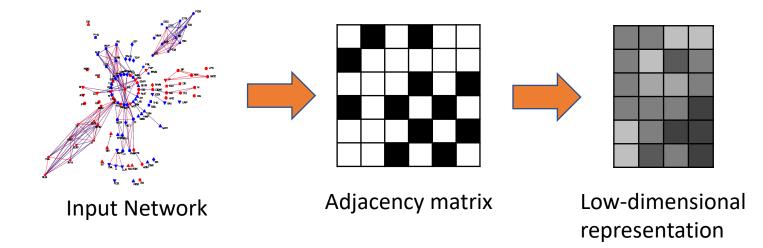
Presented by: Boxin Du University of Illinois at Urbana-Champaign



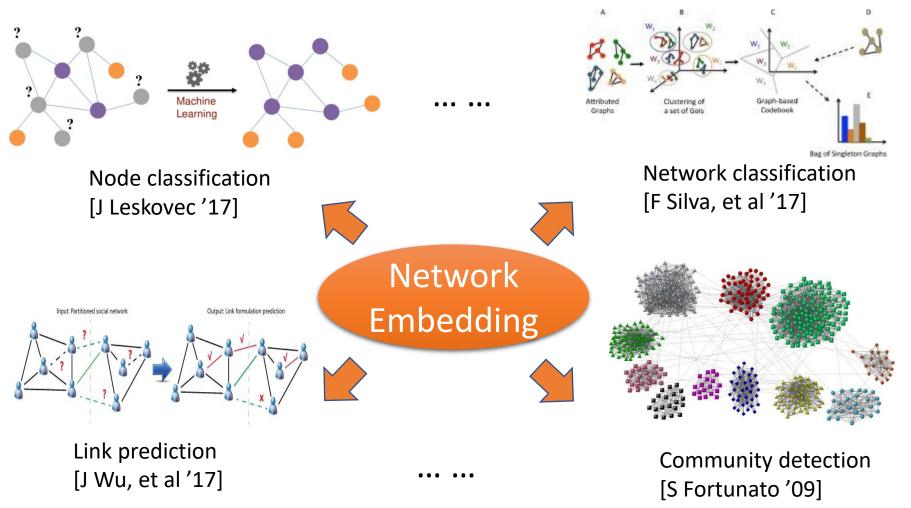
Network Embedding: Why?

<u>Goal</u>: Map network object (node/edge/subgraph/network) into a low-dimensional space.

- Distributed representations for network objects
- Encode network characteristics into continuous vector space
- Automatic feature learning for downstream tasks on networks

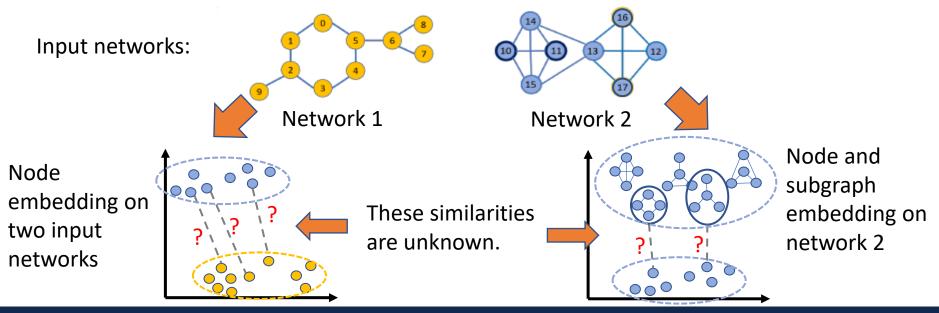


Network Embedding: Applications



Limitations of Existing Methods

- Single resolution:
 - Embedding on nodes/subgraphs/networks
 - Problem: Embeddings across resolutions are separate
- Single network:
 - Embedding on one single network
 - Problem: Embeddings on multiple networks are separate

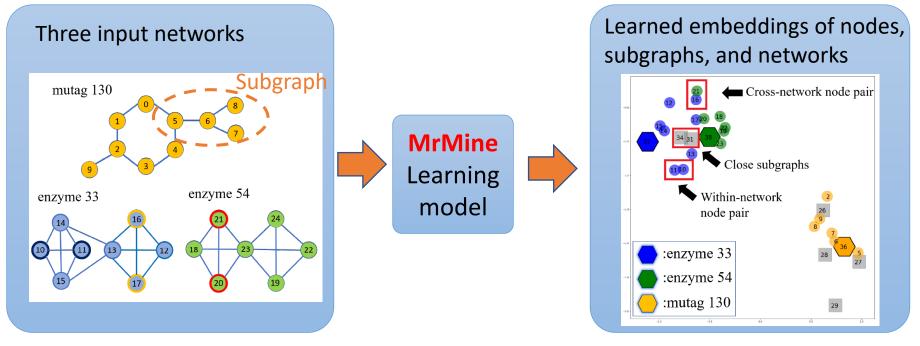


Limitations of Existing Methods (cont'd)

Name	Reference	Multi network	Multi resolution
deepwalk	B Perozzi, SIGKDD '14	×	×
LINE	J Tang, WWW '15	×	×
Node2vec	A Grover, SIGKDD '16	×	×
subgraph2vec	A Narayanan '16	×	\checkmark
Deep graph kernel	P Yanardag SIGKDD '15	\checkmark	×
struc2vec	LFR Ribeiro SIGKDD '17	\checkmark	×
Name	Reference	Multi network	Multi resolution
MrMine	This paper	\checkmark	\checkmark
MrMine+	This paper	\checkmark	\checkmark

Our methods

Multi-resolution Multi-network embedding



• <u>Goals</u>:

- Unsupervised embedding learning.
- Embeddings from different networks are comparable.
- Embeddings from different resolutions are comparable.
- Objects with close structural characteristics are close in embedding space.

Nodes:

Subgraphs:

Networks:

Roadmap

Motivation

- Problem Definition
- Proposed Solution: 'MrMine'
- Experiments
- Conclusions

Problem Definition

<u>Given</u>:

- The inputs for context building:
 - A set of networks **G**;
 - The dimension of embedding vectors p;
 - Subgraph constraints (e.g. the maximum height of WL subtrees H);
- Parameter set for language model for embedding learning.

MrMine

Learning

model

<u>Find</u>: Embedding matrices **Fg**, **Fs**, and **Fn** for:

- All input networks in **G**;
- All extracted subgraphs in S;

enzyme 54

• All nodes in **G**.

mutag 130

enzyme 33

Three Input Networks

We specify one subgraph type in proposed method.

With all embeddings in the same space.

Cross-network node pair

Close subgraphs

Within-network

node pair

:enzyme 33 :enzyme 54 :mutag 130

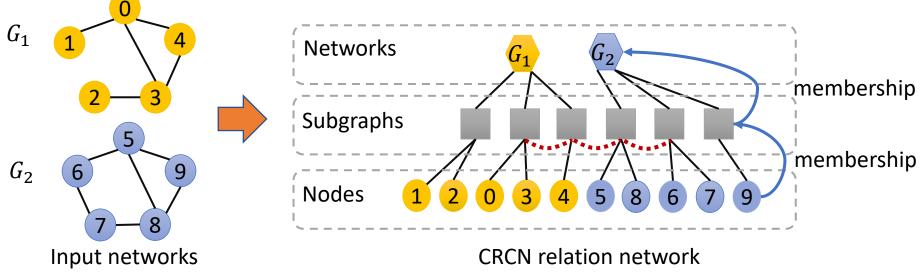
8

Roadmap

- > Motivation
- > Problem Definition
- Proposed Solution: 'MrMine'
- Experiments
- Conclusions

MrMine: Challenges and Key Ideas

- C1: How to build context for cross-resolution cross-network objects?
 - Idea: Cross-Resolution Cross-Network (CRCN) relation network
 - Adv: Relate objects across different resolutions/networks

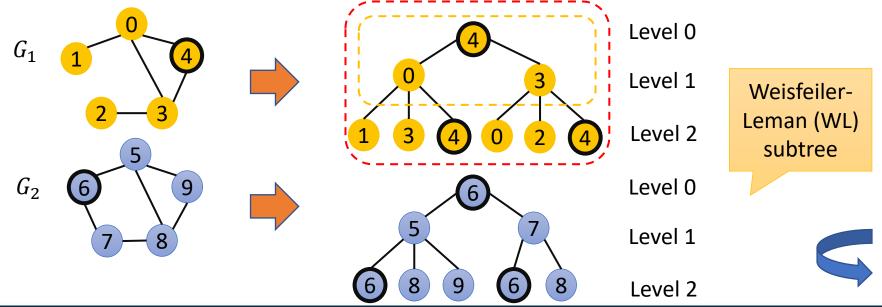


- Remarks:
 - Objects of multi-resolution and multi-network are vertices in the same network.
 - Links across different resolutions represent membership relation (e.g. blue arrow).
 - Links in the same layer on the subgraph resolution represents subgraph similarity.

MrMine: Challenges and Key Ideas (cont'd)

C2: How to construct the links of CRCN relation network?

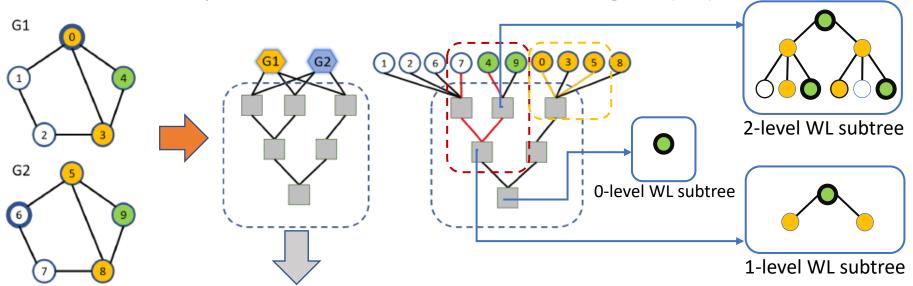
- Idea: WL subtree as the subgraph resolution
- Adv:
 - WL label transformation is efficient (O(hm), h: constant; m: # of edges)
 - 'Borderless' across different networks (allow links across networks)
 - Bridge between node resolution and network resolution



[1] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." *Journal of Machine Learning Research* 12.Sep (2011): 2539-2561.

MrMine: Challenges and Key Ideas (cont'd)

- C3: How to reduce computation costs to build CRCN relation network?
 - Idea: Hierarchical structure of CRCN network (H-CRCN)
 - Adv:
 - Hierarchical structure of WL subtrees for finer resolutions
 - Avoid explicit cross-network link building ($O(n^2)$)

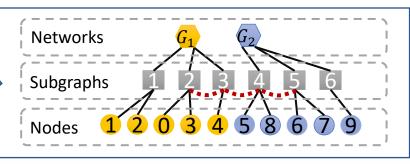


*Gray rectangle: hierarchical relation network of WL subtrees

MrMine: Method Details

- <u>Step 1</u>: H iterations of WL node label transformation:
 - Generate unique WL subtrees of height H as subgraphs
- <u>Step 2</u>: Function $f(S_i, S_j)$ to calculate the subgraph similarity:
 - Option 1: $f(S_i, S_j) = \sum_h DTW(Q_{S_i}^h, Q_{S_j}^h)$
 - Option 2: $f(S_i, S_j) = \sum_h \sum_t |\tilde{Q}_{S_i}^h(t) \tilde{Q}_{S_j}^h(t)|$
- <u>Step 3</u>: Construct CRCN relation network:

- Graph kernel can also be used, but suffers from computational $cost (O(n^3))$ [1].
- Add nodes, subgraphs, networks as new vertices in CRCN network
- Add cross resolution links based on membership relation
- Add **cross network links** based on $f(S_i, S_j)$ and threshold σ .
- <u>Step 4</u>: Apply truncated random walk for corpus generation and Skipgram model
- <u>Time complexity</u>:
 - O(Hnlog(n)) (n: # of nodes, H: small constant)



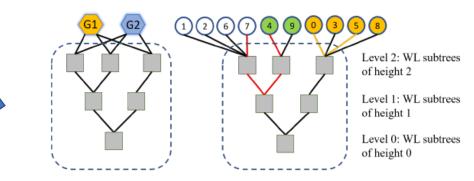
Notation:

 $Q_{S_i}^h$: sorted degree sequence of S_i on level h DTW: Dynamic Time Wrapping $\tilde{Q}_{S_i}^h$: sorted degree sequence on level h with zero filling

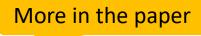
[1] Vishwanathan, S. V. N., Karsten M. Borgwardt, and Nicol N. Schraudolph. "Fast computation of graph kernels." *NIPS*. Vol. 19. 2006.
[2] Ribeiro, Leonardo FR, Pedro HP Saverese, and Daniel R. Figueiredo. "struc2vec: Learning node representations from structural identity." *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. ACM, 2017.

MrMine+: Method Details

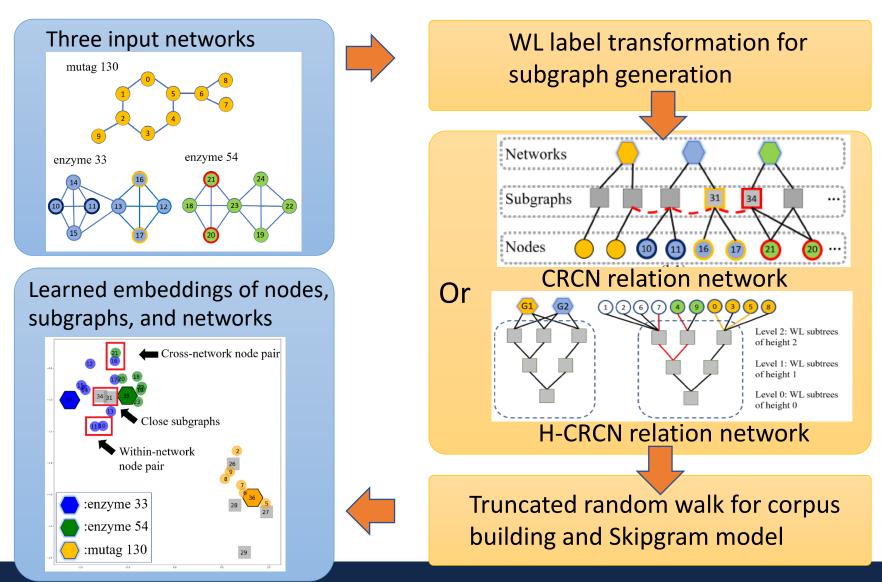
- <u>Step 1</u>: H iterations of WL node label transformation:
 - Generate unique WL subtrees of up to height H as subgraphs
- <u>Step 2</u>: Construct H-CRCN relation network:
 - Add subtree vertices to hierarchical relation network of WL subtrees (HRN)
 - Add links to HRN based on WL subtree generation relation
 - Attach network vertices/node vertices to the last level of HRN
- <u>Step 3</u>: Apply truncated random walk on two H-CRCN networks for corpus generation and Skipgram model
- <u>Time complexity</u>:
 - O(Hm + cn) (n: # of nodes; m: # of edges; H, c: small constants)



Nodes in the (H-)CRCN relation networks are called vertices



Summary of major steps

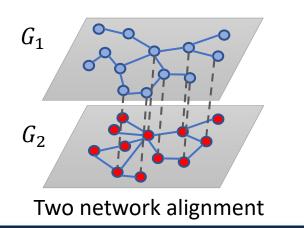


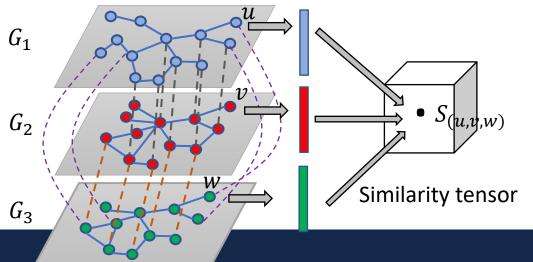
Roadmap

- > Motivation
- > Problem Definition
- ➢ Proposed Solution: 'MrMine'
- Experiments
- Conclusions

Experimental Setup (downstream tasks)

- <u>Query node retrieval:</u>
 - Given a set of nodes from G_1 , retrieve similar nodes from G_2 .
- <u>Network classification:</u>
 - Classify networks into different categories.
- Two network alignment:
 - Align nodes from two input network G_1 , G_2 .
- <u>Collective Network alignment:</u>
 - Collectively align nodes in input networks G_1, G_2, G_3 .





Real-world Datasets

4127

Name	Category		# of Nodes	# of Edges	
DBLP	Co-authorship		1,013	3,022	
Flickr	Use	r relationship	3,911	4,152	
LastFm	User relationship		4,068	4,347	
Douban	User relationship		1,118	3,022	
MySpace	Social network		6,362	6,514	
Aminer	Academic network		1,274,360	4,756,194	
Bioinformatics		# of graphs	Classes	Avg. nodes	
MUTAG		188	2	17.9	
PTC		344	2	25.5	
PROTEINS		1113	2	39.1	
NCI1		4110	2	29.8	

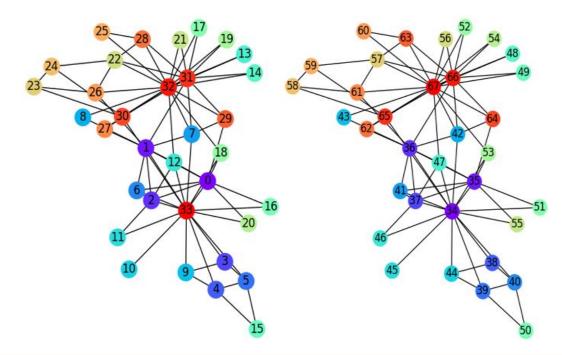
2

29.6

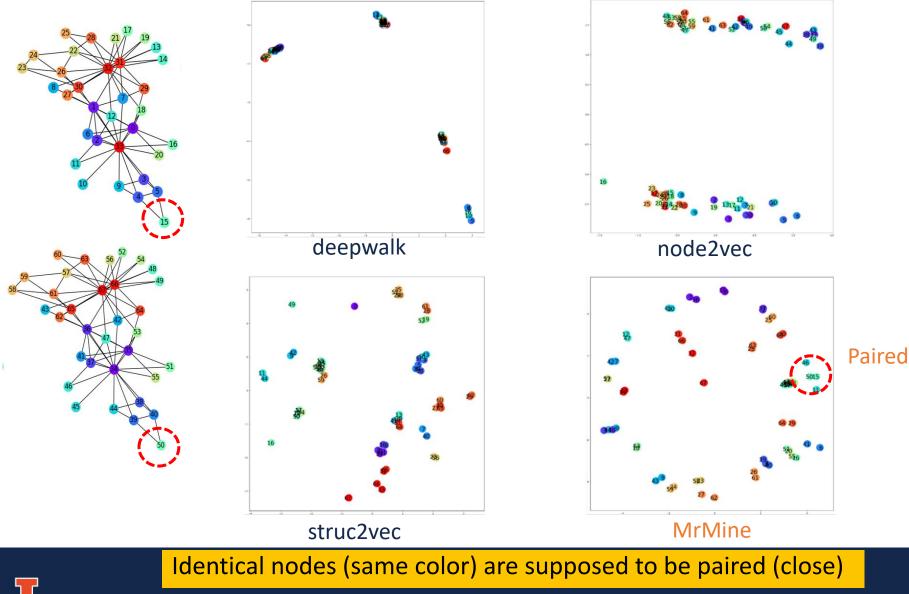
NCI109

Visualization

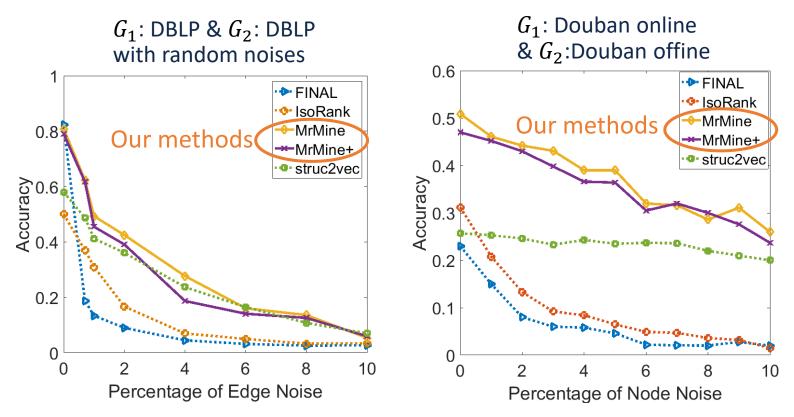
- Dataset: Mirrored Zachary's Karate Club data
- Corresponding nodes are colored the same.
- Learn the node embeddings first and project onto 2-D space.



Visualization results



Network alignment



- **Observation**:
 - Our methods are competitive in DBLP data; outperform baselines in douban data.
 - Our methods are more robust against noises.

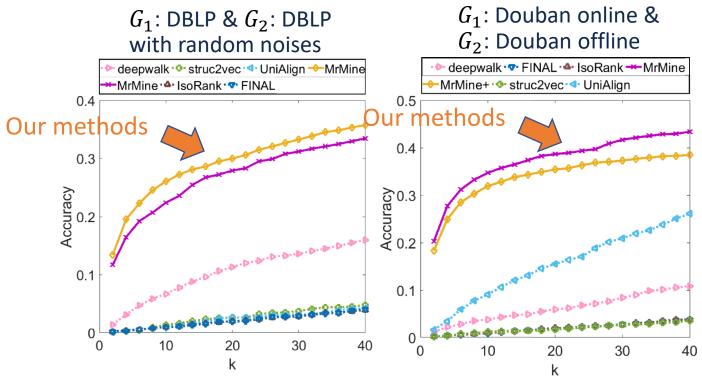
Network classification

	MUTAG	РТС	PROTEINS	NCI1	NCI109		
MrMine+	83.47±2.01	62.00±0.07	71.22±0.62	68.50±0.03	65.57±0.02		
MrMine	82.19±1.58	55.41±2.52	70.88±0.38	66.90±0.05	64.53±0.01		
WL Kernel	80.66±3.07	59.94±2.79	64.45±1.14	63.42±0.22	62.94±0.42		
Deep WL Kernel	82.95±1.96	53.29±1.53	69.49±0.26	62.83±0.25	62.47±0.15		
subgraph2vec	79.33±0.07	42.29±0.09	73.04±0.04	63.01±0.01	49.20±0.02		
(± standard deviation							

• Observation:

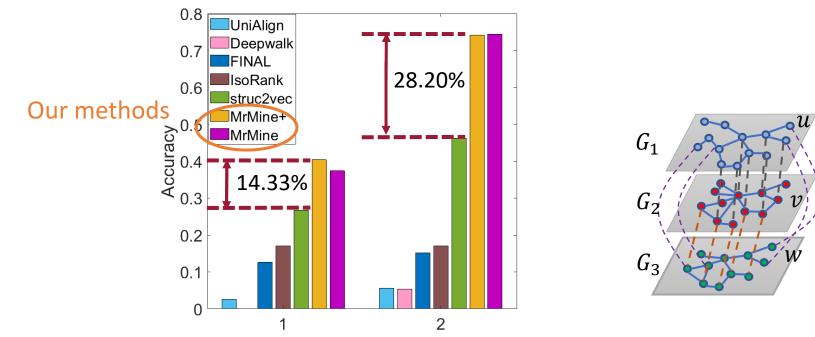
- Our methods are competitive against baseline methods.
- MrMine+ consistently outperform MrMine
- (Cross-network relation captured by H-CRCN relation network is more effective than the basic CRCN relation network in network classification task)

Node retrieval



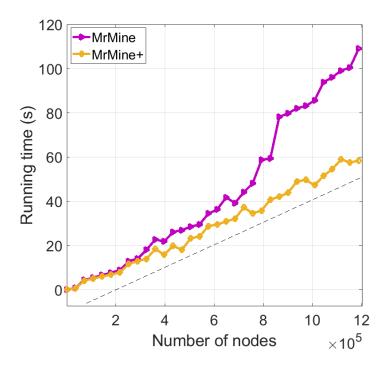
- K: For one query node of G_1 , top-k node list are retrieved from G_2 .
- Accuracy = # of hits/# of query nodes (hit: correct node appears in top-k list)
- <u>Observation</u>: Our methods outperform baselines.

Collective network alignment



- Dataset: Douban-online, douban-offline, douban-online with random noises
- Metrics: For each pair of three-node alignment:
 - Metric 1: successfully alignment when all nodes are aligned correctly.
 - Metric 2: successfully alignment when two of the three nodes are aligned correctly.
- Obs.: our methods outperform all baselines (embedding-based and non embedding-based)

Scalability



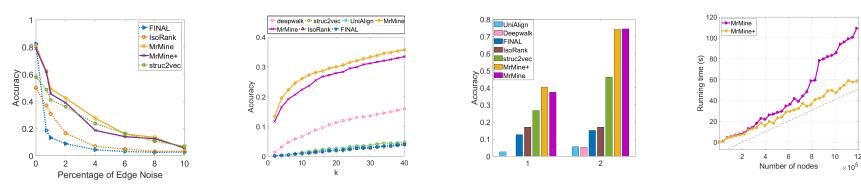
- <u>Observation</u>:
 - MrMine scales super-linearly w.r.t. # of nodes of input networks
 - MrMine+ scales linearly w.r.t. # of nodes of input networks

Roadmap

- > Motivation
- > Problem Definition
- ➢ Proposed Solution: 'MrMine'
- > Experiments
- Conclusions

Conclusion

- <u>Goal</u>: Unsupervised multi-resolution multi-network embedding.
- <u>Solution</u>: MrMine, MrMine+
 - Key idea 1: Cross-Resolution Cross-Network (CRCN) relation network
 - Key idea 2: WL subtree as the subgraph resolution
 - Key idea 3: Hierarchical structure of CRCN network
- <u>Results</u>:
 - Boost traditional network mining tasks (e.g. network classification)
 - Enable novel network mining tasks (e.g. collective network alignment)
 - Accelerated method has *linear* time complexity



Thank you!

• Q & A Session

