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Network Embedding: Why?
Goal: Map network object (node/edge/subgraph/network) into a 
low-dimensional space.
• Distributed representations for network objects
• Encode network characteristics into continuous vector space
• Automatic feature learning for downstream tasks on networks

Input Network Adjacency matrix Low-dimensional 
representation
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Network Embedding: Applications

Network 
Embedding

Node classification
[J Leskovec ’17]

Network classification
[F Silva, et al ’17]

Link prediction
[J Wu, et al ’17]

Community detection
[S Fortunato ’09]
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• Single resolution:
• Embedding on nodes/subgraphs/networks
• Problem: Embeddings across resolutions are separate

• Single network:
• Embedding on one single network
• Problem: Embeddings on multiple networks are separate

Limitations of Existing Methods

Input networks:

Node 
embedding on 
two input 
networks

Node and 
subgraph 
embedding on 
network 2

Network 1 Network 2
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Limitations of Existing Methods (cont’d)

Name Reference Multi network  Multi resolution

deepwalk B Perozzi, SIGKDD ‘14

LINE J Tang, WWW ‘15

Node2vec A Grover, SIGKDD ‘16

subgraph2vec A Narayanan ‘16

Deep graph 
kernel

P Yanardag SIGKDD ‘15

struc2vec LFR Ribeiro SIGKDD ‘17

… … … …

Name Reference Multi network Multi resolution

MrMine This paper

MrMine+ This paper

Our methods
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• Goals: 
• Unsupervised embedding learning.
• Embeddings from different networks are comparable.
• Embeddings from different resolutions are comparable.
• Objects with close structural characteristics are close in embedding space.

MrMine
Learning 

model

Multi-resolution Multi-network embedding

Subgraphs:

Networks:

Nodes:

Subgraph

Three input networks Learned embeddings of nodes, 
subgraphs, and networks
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Roadmap
➢Motivation

➢ Problem Definition

➢ Proposed Solution: ‘MrMine’

➢ Experiments

➢ Conclusions
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Problem Definition
Given: 
• The inputs for context building: 

• A set of networks G;
• The dimension of embedding vectors p; 
• Subgraph constraints (e.g. the maximum height of WL subtrees H); 

• Parameter set for language model for embedding learning. 
Find: Embedding matrices 𝐅𝐠, 𝐅𝐬, and 𝐅𝐧 for:
• All input networks in G;
• All extracted subgraphs in S;
• All nodes in G.

With all embeddings 
in the same space.

MrMine
Learning 

model

We specify one 
subgraph type in 

proposed method. 
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MrMine: Challenges and Key Ideas

• C1: How to build context for cross-resolution cross-network objects?
• Idea: Cross-Resolution Cross-Network (CRCN) relation network
• Adv: Relate objects across different resolutions/networks 

CRCN relation networkInput networks

• Remarks:
• Objects of multi-resolution and multi-network are vertices in the same network.
• Links across different resolutions represent membership relation (e.g. blue arrow).
• Links in the same layer on the subgraph resolution represents subgraph similarity. 

2 3

4

0

1

7 8

9

5

6

𝐺2𝐺1

1 2 0 3 7 98 64 5

Networks

Subgraphs

Nodes

𝐺1

𝐺2
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MrMine: Challenges and Key Ideas (cont’d)
C2: How to construct the links of CRCN relation network?
• Idea: WL subtree as the subgraph resolution
• Adv: 

• WL label transformation is efficient (𝑂(ℎ𝑚), h: constant; m: # of edges)
• ‘Borderless’ across different networks (allow links across networks)
• Bridge between node resolution and network resolution
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Weisfeiler-
Leman (WL) 

subtree

[1] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning 
Research 12.Sep (2011): 2539-2561.



• C3: How to reduce computation costs to build CRCN relation network?
• Idea: Hierarchical structure of CRCN network (H-CRCN)
• Adv: 

• Hierarchical structure of WL subtrees for finer resolutions
• Avoid explicit cross-network link building (𝑂 𝑛2 )

MrMine: Challenges and Key Ideas (cont’d)

*Gray rectangle: hierarchical relation network of WL subtrees
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2-level WL subtree

1-level WL subtree

0-level WL subtree



MrMine: Method Details
• Step 1: H iterations of WL node label transformation: 

• Generate unique WL subtrees of height H as subgraphs

• Step 2: Function 𝑓(𝑆𝑖 , 𝑆𝑗) to calculate the subgraph similarity:

• Option 1: 𝑓 𝑆𝑖 , 𝑆𝑗 = σℎ𝐷𝑇𝑊(𝑄𝑆𝑖
ℎ , 𝑄𝑆𝑗

ℎ )

• Option 2: 𝑓 𝑆𝑖 , 𝑆𝑗 = σℎσ𝑡 | ෨𝑄𝑆𝑖
ℎ 𝑡 − ෨𝑄𝑆𝑗

ℎ 𝑡 |

• Step 3: Construct CRCN relation network:
• Add nodes, subgraphs, networks as new vertices in CRCN network
• Add cross resolution links based on membership relation

• Add cross network links based on 𝑓 𝑆𝑖 , 𝑆𝑗 and threshold σ.
• Step 4: Apply truncated random walk for corpus generation and Skipgram model

• Time complexity: 
• 𝑂(𝐻𝑛𝑙𝑜𝑔(𝑛)) (n: # of nodes, H: small constant)
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Networks

Subgraphs

Nodes

Graph kernel can also 
be used, but suffers 
from computational 
cost (𝑂(𝑛3)) [1]. 

Notation:

𝑄𝑆𝑖
ℎ : sorted degree sequence of 𝑆𝑖 on level h

DTW: Dynamic Time Wrapping
෨𝑄𝑆𝑖
ℎ : sorted degree sequence on level h with 

zero filling 

[1] Vishwanathan, S. V. N., Karsten M. Borgwardt, and Nicol N. Schraudolph. "Fast computation of graph kernels." NIPS. Vol. 19. 2006.
[2] Ribeiro, Leonardo FR, Pedro HP Saverese, and Daniel R. Figueiredo. "struc2vec: Learning node representations from structural identity." 
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2017. 13



MrMine+: Method Details
• Step 1: H iterations of WL node label transformation: 

• Generate unique WL subtrees of up to height H as subgraphs

• Step 2: Construct H-CRCN relation network:
• Add subtree vertices to hierarchical relation network of WL subtrees (HRN)
• Add links to HRN based on WL subtree generation relation
• Attach network vertices/node vertices to the last level of HRN

• Step 3: Apply truncated random walk on two H-CRCN networks for corpus 
generation and Skipgram model

• Time complexity: 
• 𝑂 𝐻𝑚 + 𝑐𝑛 (n: # of nodes; m: # of edges; H, c: small constants)

Nodes in the (H-)CRCN 
relation networks are 

called vertices
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Summary of major steps
Three input networks

Learned embeddings of nodes, 
subgraphs, and networks

WL label transformation for 
subgraph generation 

Or

Truncated random walk for corpus 
building and Skipgram model

CRCN relation network 

H-CRCN relation network 
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Experimental Setup (downstream tasks)
• Query node retrieval:

• Given a set of nodes from 𝐺1, retrieve similar nodes from 𝐺2.
• Network classification:

• Classify networks into different categories.
• Two network alignment:

• Align nodes from two input network 𝐺1, 𝐺2.
• Collective Network alignment:

• Collectively align nodes in input networks 𝐺1, 𝐺2, 𝐺3.

𝐺1

𝐺2

𝐺1

𝐺2

𝐺3

.
Similarity tensor

Two network alignment

Collective network alignment

𝑢

𝑣

𝑤

𝑆(𝑢,𝑣,𝑤)
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Real-world Datasets
Name Category # of Nodes # of Edges

DBLP Co-authorship 1,013 3,022

Flickr User relationship 3,911 4,152

LastFm User relationship 4,068 4,347

Douban User relationship 1,118 3,022

MySpace Social network 6,362 6,514

Aminer Academic network 1,274,360 4,756,194

Bioinformatics # of graphs Classes Avg. nodes

MUTAG 188 2 17.9

PTC 344 2 25.5

PROTEINS 1113 2 39.1

NCI1 4110 2 29.8

NCI109 4127 2 29.6
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Visualization
• Dataset: Mirrored Zachary’s Karate Club data

• Corresponding nodes are colored the same.

• Learn the node embeddings first and project onto 2-D space.
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Visualization results

deepwalk node2vec

struc2vec MrMine
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Identical nodes (same color) are supposed to be paired (close)

Paired



Network alignment

• Observation:
• Our methods are competitive in DBLP data; outperform baselines in douban data.

• Our methods are more robust against noises. 

Our methods
Our methods

𝐺1: DBLP & 𝐺2: DBLP 
with random noises 

𝐺1: Douban online 
& 𝐺2:Douban offine
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Network classification
MUTAG PTC PROTEINS NCI1 NCI109

MrMine+ 83.47±2.01 62.00±0.07 71.22±0.62 68.50±0.03 65.57±0.02

MrMine 82.19±1.58 55.41±2.52 70.88±0.38 66.90±0.05 64.53±0.01

WL Kernel 80.66±3.07 59.94±2.79 64.45±1.14 63.42±0.22 62.94±0.42

Deep WL 
Kernel

82.95±1.96 53.29±1.53 69.49±0.26 62.83±0.25 62.47±0.15

subgraph2vec 79.33±0.07 42.29±0.09 73.04±0.04 63.01±0.01 49.20±0.02

• Observation:

• Our methods are competitive against baseline methods.

• MrMine+ consistently outperform MrMine

• (Cross-network relation captured by H-CRCN relation network is more 
effective than the basic CRCN relation network in network classification task)

(± standard deviation) 
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Node retrieval

• K: For one query node of 𝐺1, top-k node list are retrieved from 𝐺2.

• Accuracy = # of hits/# of query nodes (hit: correct node appears in top-k list)

• Observation: Our methods outperform baselines. 

𝐺1: DBLP & 𝐺2: DBLP 
with random noises 

𝐺1: Douban online & 
𝐺2: Douban offline

Our methods Our methods
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Collective network alignment

Our methods

• Dataset: Douban-online, douban-offline, douban-online with random noises

• Metrics: For each pair of three-node alignment:
• Metric 1: successfully alignment when all nodes are aligned correctly.

• Metric 2: successfully alignment when two of the three nodes are aligned correctly.

• Obs.: our methods outperform all baselines (embedding-based and non embedding-based)

𝐺1

𝐺2

𝐺3

𝑢

𝑣

𝑤

28.20%

14.33%
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Scalability

• Observation: 

• MrMine scales super-linearly w.r.t. # of nodes of input networks

• MrMine+ scales linearly w.r.t. # of nodes of input networks
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Conclusion
• Goal: Unsupervised multi-resolution multi-network embedding.

• Solution:  MrMine, MrMine+
• Key idea 1: Cross-Resolution Cross-Network (CRCN) relation network
• Key idea 2: WL subtree as the subgraph resolution
• Key idea 3: Hierarchical structure of CRCN network

• Results: 
• Boost traditional network mining tasks (e.g. network classification)
• Enable novel network mining tasks (e.g. collective network alignment)
• Accelerated method has linear time complexity
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Thank you!

•Q & A Session
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